PULSE: Proactive uncovering of latent severe anomalous events in IIoT using LSTM-RF model

Sangeeta Sharma, Priyanka Verma, Nitesh Bharot, Amish Ranpariya, Rakesh Porika
{"title":"PULSE: Proactive uncovering of latent severe anomalous events in IIoT using LSTM-RF model","authors":"Sangeeta Sharma, Priyanka Verma, Nitesh Bharot, Amish Ranpariya, Rakesh Porika","doi":"10.1007/s10586-024-04653-7","DOIUrl":null,"url":null,"abstract":"<p>In the IIoT, billions of devices continually provide information that is extremely diverse, variable, and large-scale and presents significant hurdles for interpretation and analysis. Additionally, issues about data transmission, scaling, computation, and storage can result in data anomalies that significantly affect IIoT applications. This work presents a novel anomaly detection framework for the IIoT in the context of the challenges posed by vast, heterogeneous, and complex data streams. This paper proposes a two-staged multi-variate approach employing a composition of long short-term memory (LSTM) and a random forest (RF) Classifier. Our approach leverages the LSTM’s superior temporal pattern recognition capabilities in multi-variate time-series data and the exceptional classification accuracy of the RF model. By integrating the strengths of LSTM and RF models, our method provides not only precise predictions but also effectively discriminates between anomalies and normal occurrences, even in imbalanced datasets. We evaluated our model on two real-world datasets comprising periodic and non-periodic, short-term, and long-term temporal dependencies. Comparative studies indicate that our proposed method outperforms well-established alternatives in anomaly detection, highlighting its potential application in the IIoT environment.</p>","PeriodicalId":501576,"journal":{"name":"Cluster Computing","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cluster Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10586-024-04653-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the IIoT, billions of devices continually provide information that is extremely diverse, variable, and large-scale and presents significant hurdles for interpretation and analysis. Additionally, issues about data transmission, scaling, computation, and storage can result in data anomalies that significantly affect IIoT applications. This work presents a novel anomaly detection framework for the IIoT in the context of the challenges posed by vast, heterogeneous, and complex data streams. This paper proposes a two-staged multi-variate approach employing a composition of long short-term memory (LSTM) and a random forest (RF) Classifier. Our approach leverages the LSTM’s superior temporal pattern recognition capabilities in multi-variate time-series data and the exceptional classification accuracy of the RF model. By integrating the strengths of LSTM and RF models, our method provides not only precise predictions but also effectively discriminates between anomalies and normal occurrences, even in imbalanced datasets. We evaluated our model on two real-world datasets comprising periodic and non-periodic, short-term, and long-term temporal dependencies. Comparative studies indicate that our proposed method outperforms well-established alternatives in anomaly detection, highlighting its potential application in the IIoT environment.

Abstract Image

PULSE:利用 LSTM-RF 模型主动发现 IIoT 中潜在的严重异常事件
在 IIoT 中,数十亿台设备不断提供极其多样、多变和大规模的信息,给解释和分析带来了巨大障碍。此外,数据传输、扩展、计算和存储方面的问题也会导致数据异常,从而严重影响物联网应用。本文针对庞大、异构和复杂的数据流带来的挑战,提出了一种适用于物联网的新型异常检测框架。本文提出了一种两阶段多变量方法,采用了长短期记忆(LSTM)和随机森林(RF)分类器的组合。我们的方法利用了 LSTM 在多变量时间序列数据中卓越的时间模式识别能力和 RF 模型出色的分类准确性。通过整合 LSTM 和 RF 模型的优势,我们的方法不仅能提供精确的预测,还能有效区分异常和正常现象,即使在不平衡的数据集中也是如此。我们在两个真实世界的数据集上评估了我们的模型,其中包括周期性和非周期性、短期和长期的时间依赖性。对比研究表明,我们提出的方法在异常检测方面优于其他成熟的替代方法,突出了其在物联网环境中的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信