2D/2D homojunction-mediated charge separation: Synergistic effect of crystalline C3N5 and g-C3N4 via electrostatic self-assembly for photocatalytic hydrogen and benzaldehyde production
Sue-Faye Ng, Joel Jie Foo, Peipei Zhang, Steven Hao Wan Kok, Lling-Lling Tan, Binghui Chen, Wee-Jun Ong
{"title":"2D/2D homojunction-mediated charge separation: Synergistic effect of crystalline C3N5 and g-C3N4 via electrostatic self-assembly for photocatalytic hydrogen and benzaldehyde production","authors":"Sue-Faye Ng, Joel Jie Foo, Peipei Zhang, Steven Hao Wan Kok, Lling-Lling Tan, Binghui Chen, Wee-Jun Ong","doi":"10.1016/j.gee.2024.06.008","DOIUrl":null,"url":null,"abstract":"Homojunction engineering is a promising modification strategy to improve charge carrier separation and photocatalytic performance of carbon nitrides. Leveraging intrinsic heptazine/triazine phase and face-to-face contact, crystalline CN (CC3N5) was combined with protonated g-CN (pgCN) through electrostatic self-assembly to achieve robust 2D/2D homojunction interfaces. The highest photocatalytic performance was obtained through crystallinity and homojunction engineering, by controlling the pgCN:CC3N5 ratio. The 25:100 pgCN:CC3N5 homojunction (25CgCN) had the highest hydrogen production (1409.51 μmol h) and apparent quantum efficiency (25.04%, 420 nm), 8-fold and 180-fold higher than CC3N5 and pgCN, respectively. This photocatalytic homojunction improves benzaldehyde and hydrogen production activity, retaining 89% performance after 3 cycles (12 h) on a 3D-printed substrate. Electron paramagnetic resonance demonstrated higher ·OH, ·O and hole production of irradiated 25CgCN, attributed to crystallinity and homojunction interaction. Thus, electrostatic self-assembly to couple CC3N5 and pgCN in a 2D/2D homojunction interface ameliorates the performance of multifunctional solar-driven applications.","PeriodicalId":12744,"journal":{"name":"Green Energy & Environment","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy & Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.gee.2024.06.008","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Homojunction engineering is a promising modification strategy to improve charge carrier separation and photocatalytic performance of carbon nitrides. Leveraging intrinsic heptazine/triazine phase and face-to-face contact, crystalline CN (CC3N5) was combined with protonated g-CN (pgCN) through electrostatic self-assembly to achieve robust 2D/2D homojunction interfaces. The highest photocatalytic performance was obtained through crystallinity and homojunction engineering, by controlling the pgCN:CC3N5 ratio. The 25:100 pgCN:CC3N5 homojunction (25CgCN) had the highest hydrogen production (1409.51 μmol h) and apparent quantum efficiency (25.04%, 420 nm), 8-fold and 180-fold higher than CC3N5 and pgCN, respectively. This photocatalytic homojunction improves benzaldehyde and hydrogen production activity, retaining 89% performance after 3 cycles (12 h) on a 3D-printed substrate. Electron paramagnetic resonance demonstrated higher ·OH, ·O and hole production of irradiated 25CgCN, attributed to crystallinity and homojunction interaction. Thus, electrostatic self-assembly to couple CC3N5 and pgCN in a 2D/2D homojunction interface ameliorates the performance of multifunctional solar-driven applications.
期刊介绍:
Green Energy & Environment (GEE) is an internationally recognized journal that undergoes a rigorous peer-review process. It focuses on interdisciplinary research related to green energy and the environment, covering a wide range of topics including biofuel and bioenergy, energy storage and networks, catalysis for sustainable processes, and materials for energy and the environment. GEE has a broad scope and encourages the submission of original and innovative research in both fundamental and engineering fields. Additionally, GEE serves as a platform for discussions, summaries, reviews, and previews of the impact of green energy on the eco-environment.