{"title":"Improved self-supervised learning for disease identification in chest X-ray images","authors":"Yongjun Ma, Shi Dong, Yuchao Jiang","doi":"10.1117/1.jei.33.4.043006","DOIUrl":null,"url":null,"abstract":"The utilization of chest X-ray (CXR) image data analysis for assisting in disease diagnosis is an important application of artificial intelligence. Supervised learning faces challenges due to a lack of large-scale labeled datasets and inaccuracies. Self-supervised learning offers a potential solution, but current research in this area is limited, and the diagnostic accuracy remains unsatisfactory. We propose an approach that integrates the self-supervised Bidirectional Encoder Representations from Image Transformers version 2 (BEiTv2) method with the vector quantization-based knowledge distillation (VQ-KD) strategy into CXR image data to enhance disease diagnosis accuracy. Our methodology demonstrates superior performance compared with existing self-supervised methods, showcasing its efficacy in improving diagnostic outcomes. Through transfer and ablation studies, we elucidate the benefits of the VQ-KD strategy in enhancing model performance and transferability to downstream tasks.","PeriodicalId":54843,"journal":{"name":"Journal of Electronic Imaging","volume":"34 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Imaging","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1117/1.jei.33.4.043006","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The utilization of chest X-ray (CXR) image data analysis for assisting in disease diagnosis is an important application of artificial intelligence. Supervised learning faces challenges due to a lack of large-scale labeled datasets and inaccuracies. Self-supervised learning offers a potential solution, but current research in this area is limited, and the diagnostic accuracy remains unsatisfactory. We propose an approach that integrates the self-supervised Bidirectional Encoder Representations from Image Transformers version 2 (BEiTv2) method with the vector quantization-based knowledge distillation (VQ-KD) strategy into CXR image data to enhance disease diagnosis accuracy. Our methodology demonstrates superior performance compared with existing self-supervised methods, showcasing its efficacy in improving diagnostic outcomes. Through transfer and ablation studies, we elucidate the benefits of the VQ-KD strategy in enhancing model performance and transferability to downstream tasks.
期刊介绍:
The Journal of Electronic Imaging publishes peer-reviewed papers in all technology areas that make up the field of electronic imaging and are normally considered in the design, engineering, and applications of electronic imaging systems.