Universal covers of non-negatively curved manifolds and formality

IF 0.6 3区 数学 Q3 MATHEMATICS
Aleksandar Milivojević
{"title":"Universal covers of non-negatively curved manifolds and formality","authors":"Aleksandar Milivojević","doi":"10.1007/s10455-024-09962-z","DOIUrl":null,"url":null,"abstract":"<div><p>We show that if the universal cover of a closed smooth manifold admitting a metric with non-negative Ricci curvature is formal, then the manifold itself is formal. We reprove a result of Fiorenza–Kawai–Lê–Schwachhöfer, that closed orientable manifolds with a non-negative Ricci curvature metric and sufficiently large first Betti number are formal. Our method allows us to remove the orientability hypothesis; we further address some cases of non-closed manifolds.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-024-09962-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that if the universal cover of a closed smooth manifold admitting a metric with non-negative Ricci curvature is formal, then the manifold itself is formal. We reprove a result of Fiorenza–Kawai–Lê–Schwachhöfer, that closed orientable manifolds with a non-negative Ricci curvature metric and sufficiently large first Betti number are formal. Our method allows us to remove the orientability hypothesis; we further address some cases of non-closed manifolds.

非负弯曲流形的普遍盖和形式性
我们证明,如果一个容纳非负里奇曲率度量的封闭光滑流形的普盖是形式的,那么流形本身也是形式的。我们重新证明了 Fiorenza-Kawai-Lê-Schwachhöfer 的一个结果,即具有非负 Ricci 曲率度量和足够大的第一贝蒂数的封闭可定向流形是正规的。我们的方法允许我们去除可定向性假设;我们进一步解决了一些非封闭流形的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信