On Necessary Optimality Conditions for Sets of Points in Multiobjective Optimization

IF 1.6 3区 数学 Q2 MATHEMATICS, APPLIED
Andrea Cristofari, Marianna De Santis, Stefano Lucidi
{"title":"On Necessary Optimality Conditions for Sets of Points in Multiobjective Optimization","authors":"Andrea Cristofari, Marianna De Santis, Stefano Lucidi","doi":"10.1007/s10957-024-02478-3","DOIUrl":null,"url":null,"abstract":"<p>Taking inspiration from what is commonly done in single-objective optimization, most local algorithms proposed for multiobjective optimization extend the classical iterative scalar methods and produce sequences of points able to converge to single efficient points. Recently, a growing number of local algorithms that build sequences of sets has been devised, following the real nature of multiobjective optimization, where the aim is that of approximating the efficient set. This calls for a new analysis of the necessary optimality conditions for multiobjective optimization. We explore conditions for sets of points that share the same features of the necessary optimality conditions for single-objective optimization. On the one hand, from a theoretical point of view, these conditions define properties that are necessarily satisfied by the (weakly) efficient set. On the other hand, from an algorithmic point of view, any set that does not satisfy the proposed conditions can be easily improved by using first-order information on some objective functions. We analyse both the unconstrained and the constrained case, giving some examples.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"48 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02478-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Taking inspiration from what is commonly done in single-objective optimization, most local algorithms proposed for multiobjective optimization extend the classical iterative scalar methods and produce sequences of points able to converge to single efficient points. Recently, a growing number of local algorithms that build sequences of sets has been devised, following the real nature of multiobjective optimization, where the aim is that of approximating the efficient set. This calls for a new analysis of the necessary optimality conditions for multiobjective optimization. We explore conditions for sets of points that share the same features of the necessary optimality conditions for single-objective optimization. On the one hand, from a theoretical point of view, these conditions define properties that are necessarily satisfied by the (weakly) efficient set. On the other hand, from an algorithmic point of view, any set that does not satisfy the proposed conditions can be easily improved by using first-order information on some objective functions. We analyse both the unconstrained and the constrained case, giving some examples.

Abstract Image

论多目标优化中点集的必要最优条件
大多数针对多目标优化提出的局部算法都从单目标优化的常用方法中汲取灵感,扩展了经典的迭代标量方法,并产生了能够收敛到单个有效点的点序列。最近,人们根据多目标优化的实际性质,设计出了越来越多的局部算法,这些算法可以建立集合序列,其目的是逼近有效集合。这就需要对多目标优化的必要最优条件进行新的分析。我们探讨了与单目标优化的必要最优条件相同的点集条件。一方面,从理论角度来看,这些条件定义了(弱)有效集必然满足的属性。另一方面,从算法的角度来看,任何不满足所提条件的集合都可以通过使用某些目标函数的一阶信息来轻松改进。我们分析了无约束和有约束的情况,并给出了一些例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
149
审稿时长
9.9 months
期刊介绍: The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信