Convex Predictor–Nonconvex Corrector Optimization Strategy with Application to Signal Decomposition

IF 1.6 3区 数学 Q2 MATHEMATICS, APPLIED
Laura Girometti, Martin Huska, Alessandro Lanza, Serena Morigi
{"title":"Convex Predictor–Nonconvex Corrector Optimization Strategy with Application to Signal Decomposition","authors":"Laura Girometti, Martin Huska, Alessandro Lanza, Serena Morigi","doi":"10.1007/s10957-024-02479-2","DOIUrl":null,"url":null,"abstract":"<p>Many tasks in real life scenarios can be naturally formulated as nonconvex optimization problems. Unfortunately, to date, the iterative numerical methods to find even only the local minima of these nonconvex cost functions are extremely slow and strongly affected by the initialization chosen. We devise a predictor–corrector strategy that efficiently computes locally optimal solutions to these problems. An initialization-free convex minimization allows to <i>predict</i> a global good preliminary candidate, which is then <i>corrected</i> by solving a parameter-free nonconvex minimization. A simple algorithm, such as alternating direction method of multipliers works surprisingly well in producing good solutions. This strategy is applied to the challenging problem of decomposing a 1D signal into semantically distinct components mathematically identified by smooth, piecewise-constant, oscillatory structured and unstructured (noise) parts.</p>","PeriodicalId":50100,"journal":{"name":"Journal of Optimization Theory and Applications","volume":"12 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optimization Theory and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10957-024-02479-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Many tasks in real life scenarios can be naturally formulated as nonconvex optimization problems. Unfortunately, to date, the iterative numerical methods to find even only the local minima of these nonconvex cost functions are extremely slow and strongly affected by the initialization chosen. We devise a predictor–corrector strategy that efficiently computes locally optimal solutions to these problems. An initialization-free convex minimization allows to predict a global good preliminary candidate, which is then corrected by solving a parameter-free nonconvex minimization. A simple algorithm, such as alternating direction method of multipliers works surprisingly well in producing good solutions. This strategy is applied to the challenging problem of decomposing a 1D signal into semantically distinct components mathematically identified by smooth, piecewise-constant, oscillatory structured and unstructured (noise) parts.

Abstract Image

凸预测器-非凸校正器优化策略在信号分解中的应用
现实生活中的许多任务都可以自然地表述为非凸优化问题。遗憾的是,迄今为止,即使只找到这些非凸成本函数的局部最小值,迭代数值方法的速度也极其缓慢,而且会受到所选初始化的强烈影响。我们设计了一种预测器-校正器策略,可以高效地计算出这些问题的局部最优解。通过无初始化凸最小化,可以预测出一个全局良好的初步候选方案,然后通过求解无参数非凸最小化对其进行修正。一种简单的算法,如乘数交替方向法,在产生良好解决方案方面效果惊人。这一策略被应用于将一维信号分解为语义不同的组成部分这一挑战性问题,这些组成部分在数学上由平滑、片断-恒定、振荡结构化和非结构化(噪声)部分组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
149
审稿时长
9.9 months
期刊介绍: The Journal of Optimization Theory and Applications is devoted to the publication of carefully selected regular papers, invited papers, survey papers, technical notes, book notices, and forums that cover mathematical optimization techniques and their applications to science and engineering. Typical theoretical areas include linear, nonlinear, mathematical, and dynamic programming. Among the areas of application covered are mathematical economics, mathematical physics and biology, and aerospace, chemical, civil, electrical, and mechanical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信