Partial Data Inverse Problems for Magnetic Schrödinger Operators with Potentials of Low Regularity

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Salem Selim
{"title":"Partial Data Inverse Problems for Magnetic Schrödinger Operators with Potentials of Low Regularity","authors":"Salem Selim","doi":"10.1137/22m1530707","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Mathematical Analysis, Volume 56, Issue 4, Page 4594-4622, August 2024. <br/> Abstract. We establish a global uniqueness result for an inverse boundary problem with partial data for the magnetic Schrödinger operator with a magnetic potential of class [math], and an electric potential of class [math]. Our result is an extension, in terms of the regularity of the potentials, of the results [D. Dos Santos Ferreira et al., Comm. Math. Phys., 271 (2007), pp. 467–488] and [K. Knudsen and M. Salo, Inverse Probl. Imaging, 1 (2007), pp. 349–369]. As a consequence, we also show global uniqueness for a partial data inverse boundary problem for the advection-diffusion operator with the advection term of class [math].","PeriodicalId":51150,"journal":{"name":"SIAM Journal on Mathematical Analysis","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Mathematical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1530707","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Mathematical Analysis, Volume 56, Issue 4, Page 4594-4622, August 2024.
Abstract. We establish a global uniqueness result for an inverse boundary problem with partial data for the magnetic Schrödinger operator with a magnetic potential of class [math], and an electric potential of class [math]. Our result is an extension, in terms of the regularity of the potentials, of the results [D. Dos Santos Ferreira et al., Comm. Math. Phys., 271 (2007), pp. 467–488] and [K. Knudsen and M. Salo, Inverse Probl. Imaging, 1 (2007), pp. 349–369]. As a consequence, we also show global uniqueness for a partial data inverse boundary problem for the advection-diffusion operator with the advection term of class [math].
具有低正则性势的磁薛定谔算子的部分数据反问题
SIAM 数学分析期刊》,第 56 卷第 4 期,第 4594-4622 页,2024 年 8 月。 摘要。我们为磁薛定谔算子的部分数据反边界问题建立了一个全局唯一性结果,该问题具有类[math]磁势和类[math]电势。我们的结果是 [D. Dos Santos Ferreira 等人,Comm. Math. Phys., 271 (2007), pp.因此,我们还证明了具有 [math] 类平流项的平流-扩散算子的部分数据反边界问题的全局唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
5.00%
发文量
175
审稿时长
12 months
期刊介绍: SIAM Journal on Mathematical Analysis (SIMA) features research articles of the highest quality employing innovative analytical techniques to treat problems in the natural sciences. Every paper has content that is primarily analytical and that employs mathematical methods in such areas as partial differential equations, the calculus of variations, functional analysis, approximation theory, harmonic or wavelet analysis, or dynamical systems. Additionally, every paper relates to a model for natural phenomena in such areas as fluid mechanics, materials science, quantum mechanics, biology, mathematical physics, or to the computational analysis of such phenomena. Submission of a manuscript to a SIAM journal is representation by the author that the manuscript has not been published or submitted simultaneously for publication elsewhere. Typical papers for SIMA do not exceed 35 journal pages. Substantial deviations from this page limit require that the referees, editor, and editor-in-chief be convinced that the increased length is both required by the subject matter and justified by the quality of the paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信