Aerobic fermentation always suffers from nitrogen loss and low humification degree. The objective of this study was to investigate the promotion of phosphate buffer on organic matter degradation and precursor polymerization into humus (HS) in aerobic fermentation, and to analyze the key roles played by different precursors. In order to achieve this, sludge aerobic fermentation tests were conducted on control (CK), phosphate buffer addition treatment (KP) and potassium chloride addition treatment (K).
RESULTS
The HS content of KP treatment exhibited a notable increase compared to the CK and K treatments, with a maximum increase of 38.29%. In addition, phosphate addition improved the nitrogen retention capacity and the complexity of the HS structure. Phosphate buffer enhanced both the polyphenol and Maillard humification pathways by promoting the condensation of precursors (polysaccharides, reducing sugars, polyphenols, amino acids and proteins). Among these precursors, reducing sugars, amino acids and proteins were identified as the key driving precursors of phosphate.
期刊介绍:
Journal of Chemical Technology and Biotechnology(JCTB) is an international, inter-disciplinary peer-reviewed journal concerned with the application of scientific discoveries and advancements in chemical and biological technology that aim towards economically and environmentally sustainable industrial processes.