Unique Continuation at Infinity: Carleman Estimates on General Warped Cylinders

Pub Date : 2024-07-04 DOI:10.1093/imrn/rnae147
Nicolò De Ponti, Stefano Pigola, Giona Veronelli
{"title":"Unique Continuation at Infinity: Carleman Estimates on General Warped Cylinders","authors":"Nicolò De Ponti, Stefano Pigola, Giona Veronelli","doi":"10.1093/imrn/rnae147","DOIUrl":null,"url":null,"abstract":"We obtain a vanishing result for solutions of the inequality $|\\Delta u| \\leq q_{1} |u| + q_{2} |\\nabla u|$ that decay to zero along a very general warped cylindrical end of a Riemannian manifold. The appropriate decay condition at infinity on $u$ is related to the behavior of the potential functions $q_{1}$ and $q_{2}$ and to the asymptotic geometry of the end. The main ingredient is a new Carleman estimate of independent interest. Geometric applications to conformal deformations and to minimal graphs are presented.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We obtain a vanishing result for solutions of the inequality $|\Delta u| \leq q_{1} |u| + q_{2} |\nabla u|$ that decay to zero along a very general warped cylindrical end of a Riemannian manifold. The appropriate decay condition at infinity on $u$ is related to the behavior of the potential functions $q_{1}$ and $q_{2}$ and to the asymptotic geometry of the end. The main ingredient is a new Carleman estimate of independent interest. Geometric applications to conformal deformations and to minimal graphs are presented.
分享
查看原文
无穷大时的独特延续:一般翘曲圆柱体上的卡勒曼估计值
我们得到了不等式 $|\Delta u| \leq q_{1} 的解的消失结果。|u| + q_{2}|/nabla u|$ 沿黎曼流形的一般翘曲圆柱端衰减为零。在$u$上无限远处的适当衰减条件与势函数$q_{1}$和$q_{2}$的行为以及末端的渐近几何有关。其主要内容是一个新的具有独立意义的卡勒曼估计。此外,还介绍了保角变形和最小图的几何应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信