Unique Continuation at Infinity: Carleman Estimates on General Warped Cylinders

IF 0.9 2区 数学 Q2 MATHEMATICS
Nicolò De Ponti, Stefano Pigola, Giona Veronelli
{"title":"Unique Continuation at Infinity: Carleman Estimates on General Warped Cylinders","authors":"Nicolò De Ponti, Stefano Pigola, Giona Veronelli","doi":"10.1093/imrn/rnae147","DOIUrl":null,"url":null,"abstract":"We obtain a vanishing result for solutions of the inequality $|\\Delta u| \\leq q_{1} |u| + q_{2} |\\nabla u|$ that decay to zero along a very general warped cylindrical end of a Riemannian manifold. The appropriate decay condition at infinity on $u$ is related to the behavior of the potential functions $q_{1}$ and $q_{2}$ and to the asymptotic geometry of the end. The main ingredient is a new Carleman estimate of independent interest. Geometric applications to conformal deformations and to minimal graphs are presented.","PeriodicalId":14461,"journal":{"name":"International Mathematics Research Notices","volume":"39 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematics Research Notices","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imrn/rnae147","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We obtain a vanishing result for solutions of the inequality $|\Delta u| \leq q_{1} |u| + q_{2} |\nabla u|$ that decay to zero along a very general warped cylindrical end of a Riemannian manifold. The appropriate decay condition at infinity on $u$ is related to the behavior of the potential functions $q_{1}$ and $q_{2}$ and to the asymptotic geometry of the end. The main ingredient is a new Carleman estimate of independent interest. Geometric applications to conformal deformations and to minimal graphs are presented.
无穷大时的独特延续:一般翘曲圆柱体上的卡勒曼估计值
我们得到了不等式 $|\Delta u| \leq q_{1} 的解的消失结果。|u| + q_{2}|/nabla u|$ 沿黎曼流形的一般翘曲圆柱端衰减为零。在$u$上无限远处的适当衰减条件与势函数$q_{1}$和$q_{2}$的行为以及末端的渐近几何有关。其主要内容是一个新的具有独立意义的卡勒曼估计。此外,还介绍了保角变形和最小图的几何应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
316
审稿时长
1 months
期刊介绍: International Mathematics Research Notices provides very fast publication of research articles of high current interest in all areas of mathematics. All articles are fully refereed and are judged by their contribution to advancing the state of the science of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信