Normalized ground states for a coupled Schrödinger system: mass super-critical case

Louis Jeanjean, Jianjun Zhang, Xuexiu Zhong
{"title":"Normalized ground states for a coupled Schrödinger system: mass super-critical case","authors":"Louis Jeanjean, Jianjun Zhang, Xuexiu Zhong","doi":"10.1007/s00030-024-00972-1","DOIUrl":null,"url":null,"abstract":"<p>We consider the existence of solutions <span>\\((\\lambda _1,\\lambda _2, u, v)\\in \\mathbb {R}^2\\times (H^1(\\mathbb {R}^N))^2\\)</span> to systems of coupled Schrödinger equations </p><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} -\\Delta u+\\lambda _1 u=\\mu _1 u^{p-1}+\\beta r_1 u^{r_1-1}v^{r_2}&amp;{}\\hbox {in}\\quad \\mathbb {R}^N,\\\\ -\\Delta v+\\lambda _2 v=\\mu _2 v^{q-1}+\\beta r_2 u^{r_1}v^{r_2-1}&amp;{}\\hbox {in}\\quad \\mathbb {R}^N,\\\\ 0&lt;u,v\\in H^1(\\mathbb {R}^N),\\quad 1\\le N\\le 4,&amp;{} \\end{array}\\right. } \\end{aligned}$$</span><p>satisfying the normalization </p><span>$$\\begin{aligned} \\int _{\\mathbb {R}^N}u^2 \\textrm{d}x=a \\quad \\text{ and } \\quad \\int _{\\mathbb {R}^N}v^2 \\textrm{d}x=b. \\end{aligned}$$</span><p>Here <span>\\(\\mu _1,\\mu _2,\\beta &gt;0\\)</span> and the prescribed masses <span>\\(a,b&gt;0\\)</span>. We focus on the coupled purely mass super-critical case, i.e., </p><span>$$\\begin{aligned} 2+\\frac{4}{N}&lt;p,q,r_1+r_2&lt;2^* \\end{aligned}$$</span><p>with <span>\\(2^*=\\frac{2N}{(N-2)_+}, 1\\le N\\le 4\\)</span> and give a partial affirmative answer to one open question in Bartsch et al. (J Math Pures Appl (9), 106(4):583–614, 2016). In particular, for <span>\\(N=3,4\\)</span> with <span>\\(r_1,r_2\\in (1,2)\\)</span>, our result indicates the existence for all <span>\\(a,b&gt;0\\)</span> and <span>\\(\\beta &gt;0\\)</span>.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00972-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the existence of solutions \((\lambda _1,\lambda _2, u, v)\in \mathbb {R}^2\times (H^1(\mathbb {R}^N))^2\) to systems of coupled Schrödinger equations

$$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u+\lambda _1 u=\mu _1 u^{p-1}+\beta r_1 u^{r_1-1}v^{r_2}&{}\hbox {in}\quad \mathbb {R}^N,\\ -\Delta v+\lambda _2 v=\mu _2 v^{q-1}+\beta r_2 u^{r_1}v^{r_2-1}&{}\hbox {in}\quad \mathbb {R}^N,\\ 0<u,v\in H^1(\mathbb {R}^N),\quad 1\le N\le 4,&{} \end{array}\right. } \end{aligned}$$

satisfying the normalization

$$\begin{aligned} \int _{\mathbb {R}^N}u^2 \textrm{d}x=a \quad \text{ and } \quad \int _{\mathbb {R}^N}v^2 \textrm{d}x=b. \end{aligned}$$

Here \(\mu _1,\mu _2,\beta >0\) and the prescribed masses \(a,b>0\). We focus on the coupled purely mass super-critical case, i.e.,

$$\begin{aligned} 2+\frac{4}{N}<p,q,r_1+r_2<2^* \end{aligned}$$

with \(2^*=\frac{2N}{(N-2)_+}, 1\le N\le 4\) and give a partial affirmative answer to one open question in Bartsch et al. (J Math Pures Appl (9), 106(4):583–614, 2016). In particular, for \(N=3,4\) with \(r_1,r_2\in (1,2)\), our result indicates the existence for all \(a,b>0\) and \(\beta >0\).

耦合薛定谔系统的归一化基态:质量超临界情况
我们考虑的是((\lambda _1,\lambda _2, u.、v)in (H^1(\mathbb {R}^N))^2次)耦合薛定谔方程 $$begin{aligned}{\left\{ \begin{array}{ll}-\Delta u+\lambda _1 u=\mu _1 u^{p-1}+\beta r_1 u^{r_1-1}v^{r_2}&;{}\hbox {in}\quad \mathbb {R}^N,\ -\Delta v+\lambda _2 v=\mu _2 v^{q-1}+\beta r_2 u^{r_1}v^{r_2-1}&{}\hbox {in}\quad \mathbb {R}^N,\ 0<u,v\in H^1(\mathbb {R}^N),\quad 1\le N\le 4,&{}\end{array}\right.}\满足归一化 $$\begin{aligned}\int _{mathbb {R}^N}u^2 \textrm{d}x=a \quad \text{ and }\quad int _{\mathbb {R}^N}v^2 \textrm{d}x=b.\end{aligned}$$这里是 \(\mu _1,\mu _2,\beta >0\)和规定质量 \(a,b>0\)。我们重点讨论耦合的纯质量超临界情况,即$$\begin{aligned} 2+frac{4}{N}<p,q,r_1+r_2<2^* \end{aligned}$$with (2^*=\frac{2N}{(N-2)_+}, 1\le N\le 4\ )并对 Bartsch 等人(《数学应用》(9),106(4):583-614,2016 年)中的一个开放问题给出了部分肯定的答案。特别是,对于具有(r_1,r_2in (1,2))的(N=3,4),我们的结果表明所有的(a,b>0\)和(\beta >0\)都是存在的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信