Predictability of viral load kinetics in the early phases of SARS-CoV-2 through a model-based approach

Andrea Bondesan, Antonio Piralla, Elena Ballante, Antonino Maria Guglielmo Pitrolo, Silvia Figini, Fausto Baldanti, Mattia Zanella
{"title":"Predictability of viral load kinetics in the early phases of SARS-CoV-2 through a model-based approach","authors":"Andrea Bondesan, Antonio Piralla, Elena Ballante, Antonino Maria Guglielmo Pitrolo, Silvia Figini, Fausto Baldanti, Mattia Zanella","doi":"arxiv-2407.03158","DOIUrl":null,"url":null,"abstract":"A pipeline to evaluate the evolution of viral dynamics based on a new\nmodel-driven approach has been developed in the present study. The proposed\nmethods exploit real data and the multiscale structure of the infection\ndynamics to provide robust predictions of the epidemic dynamics. We focus on\nviral load kinetics whose dynamical features are typically available in the\nsymptomatic stage of the infection. Hence, the epidemiological evolution is\nobtained by relying on a compartmental approach characterized by a varying\ninfection rate to estimate early-stage viral load dynamics, of which few data\nare available. We test the proposed approach with real data of SARS-CoV-2 viral\nload kinetics collected from patients living in an Italian province. The\nconsidered database refers to early-phase infections, whose viral load kinetics\nare not affected by mass vaccination policies in Italy. Our contribution is\ndevoted to provide an effective computational pipeline to evaluate in real time\nthe evolution of infectivity. Comprehending the factors influencing the in-host\nviral dynamics represents a fundamental tool to provide robust public health\nstrategies. This pilot study could be implemented in further investigations\ninvolving other respiratory viruses, to better clarify the process of viral\ndynamics as a preparatory action for future pandemics.","PeriodicalId":501044,"journal":{"name":"arXiv - QuanBio - Populations and Evolution","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Populations and Evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.03158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A pipeline to evaluate the evolution of viral dynamics based on a new model-driven approach has been developed in the present study. The proposed methods exploit real data and the multiscale structure of the infection dynamics to provide robust predictions of the epidemic dynamics. We focus on viral load kinetics whose dynamical features are typically available in the symptomatic stage of the infection. Hence, the epidemiological evolution is obtained by relying on a compartmental approach characterized by a varying infection rate to estimate early-stage viral load dynamics, of which few data are available. We test the proposed approach with real data of SARS-CoV-2 viral load kinetics collected from patients living in an Italian province. The considered database refers to early-phase infections, whose viral load kinetics are not affected by mass vaccination policies in Italy. Our contribution is devoted to provide an effective computational pipeline to evaluate in real time the evolution of infectivity. Comprehending the factors influencing the in-host viral dynamics represents a fundamental tool to provide robust public health strategies. This pilot study could be implemented in further investigations involving other respiratory viruses, to better clarify the process of viral dynamics as a preparatory action for future pandemics.
通过基于模型的方法预测 SARS-CoV-2 早期阶段的病毒载量动力学
本研究基于一种新的模型驱动方法,开发了一种评估病毒动态演变的管道。所提出的方法利用了真实数据和感染动力学的多尺度结构,为流行病动力学提供了可靠的预测。我们将重点放在病毒载量动力学上,其动力学特征通常在感染的无症状阶段就可获得。因此,流行病学的演变是依靠以不同感染率为特征的分区方法来估计早期阶段的病毒载量动态的,而这种方法可用的数据很少。我们利用从意大利一个省的患者身上收集到的 SARS-CoV-2 病毒载量动力学的真实数据对所提出的方法进行了测试。所考虑的数据库指的是早期感染,其病毒载量动力学不受意大利大规模疫苗接种政策的影响。我们的贡献在于提供了一个有效的计算管道来实时评估感染性的演变。了解影响宿主体内病毒动态的因素是提供强有力的公共卫生策略的基本工具。这项试验性研究可在涉及其他呼吸道病毒的进一步调查中实施,以更好地阐明病毒动力学过程,为未来的大流行做好准备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信