{"title":"Memory‐efficient compression of 𝒟ℋ2‐matrices for high‐frequency Helmholtz problems","authors":"Steffen Börm, Janne Henningsen","doi":"10.1002/nla.2575","DOIUrl":null,"url":null,"abstract":"Directional interpolation is a fast and efficient compression technique for high‐frequency Helmholtz boundary integral equations, but requires a very large amount of storage in its original form. Algebraic recompression can significantly reduce the storage requirements and speed up the solution process accordingly. During the recompression process, weight matrices are required to correctly measure the influence of different basis vectors on the final result, and for highly accurate approximations, these weight matrices require more storage than the final compressed matrix. We present a compression method for the weight matrices and demonstrate that it introduces only a controllable error to the overall approximation. Numerical experiments show that the new method leads to a significant reduction in storage requirements.","PeriodicalId":49731,"journal":{"name":"Numerical Linear Algebra with Applications","volume":"85 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Linear Algebra with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/nla.2575","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Directional interpolation is a fast and efficient compression technique for high‐frequency Helmholtz boundary integral equations, but requires a very large amount of storage in its original form. Algebraic recompression can significantly reduce the storage requirements and speed up the solution process accordingly. During the recompression process, weight matrices are required to correctly measure the influence of different basis vectors on the final result, and for highly accurate approximations, these weight matrices require more storage than the final compressed matrix. We present a compression method for the weight matrices and demonstrate that it introduces only a controllable error to the overall approximation. Numerical experiments show that the new method leads to a significant reduction in storage requirements.
期刊介绍:
Manuscripts submitted to Numerical Linear Algebra with Applications should include large-scale broad-interest applications in which challenging computational results are integral to the approach investigated and analysed. Manuscripts that, in the Editor’s view, do not satisfy these conditions will not be accepted for review.
Numerical Linear Algebra with Applications receives submissions in areas that address developing, analysing and applying linear algebra algorithms for solving problems arising in multilinear (tensor) algebra, in statistics, such as Markov Chains, as well as in deterministic and stochastic modelling of large-scale networks, algorithm development, performance analysis or related computational aspects.
Topics covered include: Standard and Generalized Conjugate Gradients, Multigrid and Other Iterative Methods; Preconditioning Methods; Direct Solution Methods; Numerical Methods for Eigenproblems; Newton-like Methods for Nonlinear Equations; Parallel and Vectorizable Algorithms in Numerical Linear Algebra; Application of Methods of Numerical Linear Algebra in Science, Engineering and Economics.