Fokas-Lenells Derivative nonlinear Schrödinger equation its associated soliton surfaces and Gaussian curvature

Sagardeep Talukdar, Riki Dutta, Gautam Kumar Saharia, Sudipta Nandy
{"title":"Fokas-Lenells Derivative nonlinear Schrödinger equation its associated soliton surfaces and Gaussian curvature","authors":"Sagardeep Talukdar, Riki Dutta, Gautam Kumar Saharia, Sudipta Nandy","doi":"arxiv-2406.03203","DOIUrl":null,"url":null,"abstract":"One of the most important tasks in mathematics and physics is to connect\ndifferential geometry and nonlinear differential equations. In the study of\nnonlinear optics, integrable nonlinear differential equations such as the\nnonlinear Schr\\\"odinger equation (NLSE) and higher-order NLSE (HNLSE) play\ncrucial roles. Because of the medium's balance between dispersion and\nnonlinearity, all of these systems display soliton solutions. The soliton\nsurfaces, or manifolds, connected to these integrable systems hold significance\nin numerous areas of mathematics and physics. We examine the use of soliton\ntheory in differential geometry in this paper. We build the two-dimensional\nsoliton surface in the three-dimensional Euclidean space by taking into account\nthe Fokas-Lenells Derivative nonlinear Schr\\\"odinger equation (also known as\nthe gauged Fokas-Lenells equation). The same is constructed by us using the\nSym-Tafel formula. The first and second fundamental forms, surface area, and\nGaussian curvature are obtained using a Lax representation of the gauged FLE.","PeriodicalId":501592,"journal":{"name":"arXiv - PHYS - Exactly Solvable and Integrable Systems","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Exactly Solvable and Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.03203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the most important tasks in mathematics and physics is to connect differential geometry and nonlinear differential equations. In the study of nonlinear optics, integrable nonlinear differential equations such as the nonlinear Schr\"odinger equation (NLSE) and higher-order NLSE (HNLSE) play crucial roles. Because of the medium's balance between dispersion and nonlinearity, all of these systems display soliton solutions. The soliton surfaces, or manifolds, connected to these integrable systems hold significance in numerous areas of mathematics and physics. We examine the use of soliton theory in differential geometry in this paper. We build the two-dimensional soliton surface in the three-dimensional Euclidean space by taking into account the Fokas-Lenells Derivative nonlinear Schr\"odinger equation (also known as the gauged Fokas-Lenells equation). The same is constructed by us using the Sym-Tafel formula. The first and second fundamental forms, surface area, and Gaussian curvature are obtained using a Lax representation of the gauged FLE.
Fokas-Lenells 衍生非线性薛定谔方程及其相关孤子面和高斯曲率
数学和物理学中最重要的任务之一就是将微分几何和非线性微分方程联系起来。在非线性光学研究中,可积分非线性微分方程,如非线性薛定谔方程(NLSE)和高阶非线性薛定谔方程(HNLSE)起着至关重要的作用。由于介质在分散性和非线性之间的平衡,所有这些系统都显示出孤子解。与这些可积分系统相连的孤子曲面或流形在数学和物理学的许多领域都具有重要意义。本文将探讨孤子理论在微分几何中的应用。我们通过考虑 Fokas-Lenells 衍生非线性 Schr\"odinger 方程(也称为 gauged Fokas-Lenells 方程),在三维欧几里得空间中构建了二维索里屯曲面。我们使用 Sym-Tafel 公式构建了该方程。第一和第二基本形式、表面积和高斯曲率都是通过 gauged FLE 的拉克斯表示法得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信