Dynamic variation of dissolved As, Sb, Fe and S in paddy soil triggered by nitrate loading to overlaying water

IF 2.8 3区 农林科学 Q3 ENVIRONMENTAL SCIENCES
Zhao-Feng Yuan, Sha Zhang, Williamson Gustave, Tida Ge, Zhenke Zhu, Xiaoyu Shi, Xianjin Tang, Zheng Chen
{"title":"Dynamic variation of dissolved As, Sb, Fe and S in paddy soil triggered by nitrate loading to overlaying water","authors":"Zhao-Feng Yuan, Sha Zhang, Williamson Gustave, Tida Ge, Zhenke Zhu, Xiaoyu Shi, Xianjin Tang, Zheng Chen","doi":"10.1007/s11368-024-03852-4","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>Arsenic (As) and antimony (Sb) are toxic elements that usually co-occur in paddy soils due to their chemical similarity. Those elements are redox-sensitive and shift their species across the soil–water interface (SWI) where redox potentials change in every millimeter. In the real world, the distribution and speciation of As and Sb in soils are often influenced by external redox disturbance, but their temporospatial response remains poorly understood. This study aimed to address this gap by introducing external disturbance by adding nitrate into the overlying water.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>Daily changes in the profile of As, Sb, iron (Fe), and sulfur (S) were measured using ICP-MS and the <i>In-situ</i> Porewater Iterative (IPI) sampler array.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The results revealed a rapid formation of a sink for As and Fe at the oxic-anoxic transition zone within one day, persisting for at least 6 days and extending to ~ 30 mm below the SWI. Moreover, Sb was re-mobilized in the same area as the As and Fe sink, but the re-mobilized Sb zone was weaker, lasting only 4 days and extending to ~ 20 mm below the SWI. The presence of aqueous ferrous Fe below the transition zone facilitated the formation of Fe and As sink, while the presence of aqueous sulfide below the transition zone hindered the development of the Sb source.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>These findings highlight the importance of carefully evaluating the impact of nitrate-based fertilizers or stabilization reagents when applied in As and Sb contaminated soils.</p>","PeriodicalId":17139,"journal":{"name":"Journal of Soils and Sediments","volume":"4 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soils and Sediments","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11368-024-03852-4","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

Arsenic (As) and antimony (Sb) are toxic elements that usually co-occur in paddy soils due to their chemical similarity. Those elements are redox-sensitive and shift their species across the soil–water interface (SWI) where redox potentials change in every millimeter. In the real world, the distribution and speciation of As and Sb in soils are often influenced by external redox disturbance, but their temporospatial response remains poorly understood. This study aimed to address this gap by introducing external disturbance by adding nitrate into the overlying water.

Methods

Daily changes in the profile of As, Sb, iron (Fe), and sulfur (S) were measured using ICP-MS and the In-situ Porewater Iterative (IPI) sampler array.

Results

The results revealed a rapid formation of a sink for As and Fe at the oxic-anoxic transition zone within one day, persisting for at least 6 days and extending to ~ 30 mm below the SWI. Moreover, Sb was re-mobilized in the same area as the As and Fe sink, but the re-mobilized Sb zone was weaker, lasting only 4 days and extending to ~ 20 mm below the SWI. The presence of aqueous ferrous Fe below the transition zone facilitated the formation of Fe and As sink, while the presence of aqueous sulfide below the transition zone hindered the development of the Sb source.

Conclusion

These findings highlight the importance of carefully evaluating the impact of nitrate-based fertilizers or stabilization reagents when applied in As and Sb contaminated soils.

Abstract Image

覆土水中硝酸盐负荷引发的水稻土壤中溶解的 As、Sb、Fe 和 S 的动态变化
目的砷(As)和锑(Sb)是有毒元素,由于化学性质相似,通常同时存在于水稻田土壤中。这些元素对氧化还原反应敏感,并在土壤-水界面(SWI)上转移其物种,而在该界面上,氧化还原电位每毫米都会发生变化。在现实世界中,土壤中砷和锑的分布和种类经常受到外部氧化还原扰动的影响,但人们对它们的时空反应仍然知之甚少。本研究旨在通过向上层水中添加硝酸盐来引入外部干扰,从而弥补这一空白。方法使用 ICP-MS 和原位孔隙水迭代(IPI)采样器阵列测量砷、锑、铁(Fe)和硫(S)剖面的每日变化。此外,在砷和铁沉降的同一区域,锑也被重新移动,但重新移动的锑区较弱,只持续了 4 天,并延伸至 SWI 以下约 20 毫米处。过渡带下方存在含铁水溶液促进了铁和砷汇的形成,而过渡带下方存在硫化物水溶液则阻碍了锑源的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Soils and Sediments
Journal of Soils and Sediments 环境科学-土壤科学
CiteScore
7.00
自引率
5.60%
发文量
256
审稿时长
3.5 months
期刊介绍: The Journal of Soils and Sediments (JSS) is devoted to soils and sediments; it deals with contaminated, intact and disturbed soils and sediments. JSS explores both the common aspects and the differences between these two environmental compartments. Inter-linkages at the catchment scale and with the Earth’s system (inter-compartment) are an important topic in JSS. The range of research coverage includes the effects of disturbances and contamination; research, strategies and technologies for prediction, prevention, and protection; identification and characterization; treatment, remediation and reuse; risk assessment and management; creation and implementation of quality standards; international regulation and legislation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信