{"title":"Lancaster correlation: A new dependence measure linked to maximum correlation","authors":"Hajo Holzmann, Bernhard Klar","doi":"10.1111/sjos.12733","DOIUrl":null,"url":null,"abstract":"We suggest novel correlation coefficients which equal the maximum correlation for a class of bivariate Lancaster distributions while being only slightly smaller than maximum correlation for a variety of further bivariate distributions. In contrast to maximum correlation, however, our correlation coefficients allow for rank and moment‐based estimators which are simple to compute and have tractable asymptotic distributions. Confidence intervals resulting from these asymptotic approximations and the covariance bootstrap show good finite‐sample coverage. In a simulation, the power of asymptotic as well as permutation tests for independence based on our correlation measures compares favorably with competing methods based on distance correlation or rank coefficients for functional dependence, among others. Moreover, for the bivariate normal distribution, our correlation coefficients equal the absolute value of the Pearson correlation, an attractive feature for practitioners which is not shared by various competitors. We illustrate the practical usefulness of our methods in applications to two real data sets.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/sjos.12733","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
We suggest novel correlation coefficients which equal the maximum correlation for a class of bivariate Lancaster distributions while being only slightly smaller than maximum correlation for a variety of further bivariate distributions. In contrast to maximum correlation, however, our correlation coefficients allow for rank and moment‐based estimators which are simple to compute and have tractable asymptotic distributions. Confidence intervals resulting from these asymptotic approximations and the covariance bootstrap show good finite‐sample coverage. In a simulation, the power of asymptotic as well as permutation tests for independence based on our correlation measures compares favorably with competing methods based on distance correlation or rank coefficients for functional dependence, among others. Moreover, for the bivariate normal distribution, our correlation coefficients equal the absolute value of the Pearson correlation, an attractive feature for practitioners which is not shared by various competitors. We illustrate the practical usefulness of our methods in applications to two real data sets.
期刊介绍:
The Scandinavian Journal of Statistics is internationally recognised as one of the leading statistical journals in the world. It was founded in 1974 by four Scandinavian statistical societies. Today more than eighty per cent of the manuscripts are submitted from outside Scandinavia.
It is an international journal devoted to reporting significant and innovative original contributions to statistical methodology, both theory and applications.
The journal specializes in statistical modelling showing particular appreciation of the underlying substantive research problems.
The emergence of specialized methods for analysing longitudinal and spatial data is just one example of an area of important methodological development in which the Scandinavian Journal of Statistics has a particular niche.