Enzyme Conjugation - A Promising Tool for Bio-catalytic and Biotransformation Applications – A Review

IF 2.8 3区 化学 Q2 CHEMISTRY, APPLIED
Muhammad Asif Muneer, Sumaya Fatima, Nazim Hussain, Tebogo Mashifana, Aniqa Sayed, Grzegorz Boczkaj, Muhammad Shahid Riaz Rajoka
{"title":"Enzyme Conjugation - A Promising Tool for Bio-catalytic and Biotransformation Applications – A Review","authors":"Muhammad Asif Muneer, Sumaya Fatima, Nazim Hussain, Tebogo Mashifana, Aniqa Sayed, Grzegorz Boczkaj, Muhammad Shahid Riaz Rajoka","doi":"10.1007/s11244-024-01986-w","DOIUrl":null,"url":null,"abstract":"<p>Enzymes have revolutionized conventional industrial catalysts as more efficient, eco-friendly, and sustainable substitutes that can be used in different biotechnological processes, food, and pharmaceutical industries. Yet, the enzymes from nature are engineered to make them adapt and enhance their durability in the industrial environment. One promising approach involves the combined use of multiple enzymes that catalyze highly selective and sequential reactions in a single reaction vessel. The multi-enzymatic biocatalytic systems, achieved through gene fusion, fusion proteins, DNA manipulation and bioconjugation, protein engineering, or attachment to solid support materials for immobilization, such as protein-polymer, silica, metal organic framework, Carbon nanotubes or graphene based hybrids, have found widespread utility across various sectors, including the food industry, wastewater treatment, drug delivery, biosensors and methanol production. Enzyme conjugation enables the creation of novel enzymes with improved kinetics and synergistic effects. Researchers can evolve fusion proteins by fusion enzymes which can evolve novel catalytic activities in Biotechnological processes. These engineered enzymes can contribute in synthetic Biology in construction of synthetic system for various applications. Enzyme conjugation helps in metabolic engineering by optimization of pathways. Researchers can develop pathways for production of Bio-sensors, pharmaceuticals, biofuels and other valuable industrial products. This review comprehensively explores the techniques and applications of enzyme conjugation, highlighting its pivotal role in advancing the field of bio-catalysis.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"42 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Catalysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11244-024-01986-w","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Enzymes have revolutionized conventional industrial catalysts as more efficient, eco-friendly, and sustainable substitutes that can be used in different biotechnological processes, food, and pharmaceutical industries. Yet, the enzymes from nature are engineered to make them adapt and enhance their durability in the industrial environment. One promising approach involves the combined use of multiple enzymes that catalyze highly selective and sequential reactions in a single reaction vessel. The multi-enzymatic biocatalytic systems, achieved through gene fusion, fusion proteins, DNA manipulation and bioconjugation, protein engineering, or attachment to solid support materials for immobilization, such as protein-polymer, silica, metal organic framework, Carbon nanotubes or graphene based hybrids, have found widespread utility across various sectors, including the food industry, wastewater treatment, drug delivery, biosensors and methanol production. Enzyme conjugation enables the creation of novel enzymes with improved kinetics and synergistic effects. Researchers can evolve fusion proteins by fusion enzymes which can evolve novel catalytic activities in Biotechnological processes. These engineered enzymes can contribute in synthetic Biology in construction of synthetic system for various applications. Enzyme conjugation helps in metabolic engineering by optimization of pathways. Researchers can develop pathways for production of Bio-sensors, pharmaceuticals, biofuels and other valuable industrial products. This review comprehensively explores the techniques and applications of enzyme conjugation, highlighting its pivotal role in advancing the field of bio-catalysis.

Graphical Abstract

Abstract Image

酶共轭--生物催化和生物转化应用的前景广阔的工具--综述
酶已经彻底改变了传统的工业催化剂,成为更高效、生态友好和可持续的替代品,可用于不同的生物技术过程、食品和制药行业。然而,对来自自然界的酶进行改造,使其适应工业环境并提高其耐久性。一种很有前景的方法是在一个反应容器中联合使用多种酶,催化高选择性和顺序反应。多酶生物催化系统是通过基因融合、融合蛋白、DNA 操作和生物共轭、蛋白质工程或附着到固体支持材料(如蛋白质聚合物、二氧化硅、金属有机框架、碳纳米管或石墨烯基混合体)上进行固定化而实现的,已在食品工业、废水处理、药物输送、生物传感器和甲醇生产等各个领域得到广泛应用。酶共轭可以创造出具有更好的动力学和协同效应的新型酶。研究人员可以通过融合酶进化出融合蛋白,从而在生物技术过程中产生新的催化活性。这些工程酶可以在合成生物学中为各种应用构建合成系统做出贡献。酶共轭有助于通过优化途径进行代谢工程。研究人员可以开发生产生物传感器、药品、生物燃料和其他有价值工业产品的途径。这篇综述全面探讨了酶联技术和应用,强调了酶联技术在推动生物催化领域发展中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Topics in Catalysis
Topics in Catalysis 化学-物理化学
CiteScore
5.70
自引率
5.60%
发文量
197
审稿时长
2 months
期刊介绍: Topics in Catalysis publishes topical collections in all fields of catalysis which are composed only of invited articles from leading authors. The journal documents today’s emerging and critical trends in all branches of catalysis. Each themed issue is organized by renowned Guest Editors in collaboration with the Editors-in-Chief. Proposals for new topics are welcome and should be submitted directly to the Editors-in-Chief. The publication of individual uninvited original research articles can be sent to our sister journal Catalysis Letters. This journal aims for rapid publication of high-impact original research articles in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信