MFDNet: Multi-Frequency Deflare Network for efficient nighttime flare removal

Yiguo Jiang, Xuhang Chen, Chi-Man Pun, Shuqiang Wang, Wei Feng
{"title":"MFDNet: Multi-Frequency Deflare Network for efficient nighttime flare removal","authors":"Yiguo Jiang, Xuhang Chen, Chi-Man Pun, Shuqiang Wang, Wei Feng","doi":"10.1007/s00371-024-03540-x","DOIUrl":null,"url":null,"abstract":"<p>When light is scattered or reflected accidentally in the lens, flare artifacts may appear in the captured photographs, affecting the photographs’ visual quality. The main challenge in flare removal is to eliminate various flare artifacts while preserving the original content of the image. To address this challenge, we propose a lightweight Multi-Frequency Deflare Network (MFDNet) based on the Laplacian Pyramid. Our network decomposes the flare-corrupted image into low- and high-frequency bands, effectively separating the illumination and content information in the image. The low-frequency part typically contains illumination information, while the high-frequency part contains detailed content information. So our MFDNet consists of two main modules: the Low-Frequency Flare Perception Module (LFFPM) to remove flare in the low-frequency part and the Hierarchical Fusion Reconstruction Module (HFRM) to reconstruct the flare-free image. Specifically, to perceive flare from a global perspective while retaining detailed information for image restoration, LFFPM utilizes Transformer to extract global information while utilizing a convolutional neural network to capture detailed local features. Then HFRM gradually fuses the outputs of LFFPM with the high-frequency component of the image through feature aggregation. Moreover, our MFDNet can reduce the computational cost by processing in multiple frequency bands instead of directly removing the flare on the input image. Experimental results demonstrate that our approach outperforms state-of-the-art methods in removing nighttime flare on real-world and synthetic images from the Flare7K dataset. Furthermore, the computational complexity of our model is remarkably low.</p>","PeriodicalId":501186,"journal":{"name":"The Visual Computer","volume":"79 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Visual Computer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00371-024-03540-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When light is scattered or reflected accidentally in the lens, flare artifacts may appear in the captured photographs, affecting the photographs’ visual quality. The main challenge in flare removal is to eliminate various flare artifacts while preserving the original content of the image. To address this challenge, we propose a lightweight Multi-Frequency Deflare Network (MFDNet) based on the Laplacian Pyramid. Our network decomposes the flare-corrupted image into low- and high-frequency bands, effectively separating the illumination and content information in the image. The low-frequency part typically contains illumination information, while the high-frequency part contains detailed content information. So our MFDNet consists of two main modules: the Low-Frequency Flare Perception Module (LFFPM) to remove flare in the low-frequency part and the Hierarchical Fusion Reconstruction Module (HFRM) to reconstruct the flare-free image. Specifically, to perceive flare from a global perspective while retaining detailed information for image restoration, LFFPM utilizes Transformer to extract global information while utilizing a convolutional neural network to capture detailed local features. Then HFRM gradually fuses the outputs of LFFPM with the high-frequency component of the image through feature aggregation. Moreover, our MFDNet can reduce the computational cost by processing in multiple frequency bands instead of directly removing the flare on the input image. Experimental results demonstrate that our approach outperforms state-of-the-art methods in removing nighttime flare on real-world and synthetic images from the Flare7K dataset. Furthermore, the computational complexity of our model is remarkably low.

Abstract Image

MFDNet:多频照明弹网络,用于有效清除夜间照明弹
当光线在镜头中意外散射或反射时,拍摄的照片中可能会出现耀斑伪影,从而影响照片的视觉质量。消除耀斑的主要挑战是在保留图像原始内容的同时消除各种耀斑伪影。为应对这一挑战,我们提出了一种基于拉普拉斯金字塔的轻量级多频耀斑网络(MFDNet)。我们的网络将耀斑破坏的图像分解为低频和高频段,有效地分离了图像中的光照和内容信息。低频部分通常包含照明信息,而高频部分则包含详细的内容信息。因此,我们的 MFDNet 包括两个主要模块:用于去除低频部分耀斑的低频耀斑感知模块(LFFPM)和用于重建无耀斑图像的分层融合重建模块(HFRM)。具体来说,为了从全局角度感知耀斑,同时保留细节信息用于图像修复,LFFPM 利用变换器提取全局信息,同时利用卷积神经网络捕捉局部细节特征。然后,HFRM 通过特征聚合将 LFFPM 的输出与图像的高频分量逐渐融合。此外,我们的 MFDNet 可以通过多频段处理来降低计算成本,而不是直接去除输入图像上的耀斑。实验结果表明,在去除 Flare7K 数据集中真实世界和合成图像上的夜间耀斑方面,我们的方法优于最先进的方法。此外,我们模型的计算复杂度也非常低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信