The spectral boundary of block structured random matrices

IF 2.6 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Nirbhay Patil, Fabián Aguirre-López and Jean-Philippe Bouchaud
{"title":"The spectral boundary of block structured random matrices","authors":"Nirbhay Patil, Fabián Aguirre-López and Jean-Philippe Bouchaud","doi":"10.1088/2632-072x/ad5cba","DOIUrl":null,"url":null,"abstract":"Economic and ecological models can be extremely complex, with a large number of agents/species each featuring multiple interacting dynamical quantities. In an attempt to understand the generic stability properties of such systems, we define and study an interesting new matrix ensemble with extensive correlations, generalising the elliptic ensemble. We determine analytically the boundary of its eigenvalue spectrum in the complex plane, as a function of the correlations determined by the model at hand. We solve numerically our equations in several cases of interest, and show that the resulting spectra can take a surprisingly wide variety of shapes.","PeriodicalId":53211,"journal":{"name":"Journal of Physics Complexity","volume":"31 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2632-072x/ad5cba","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Economic and ecological models can be extremely complex, with a large number of agents/species each featuring multiple interacting dynamical quantities. In an attempt to understand the generic stability properties of such systems, we define and study an interesting new matrix ensemble with extensive correlations, generalising the elliptic ensemble. We determine analytically the boundary of its eigenvalue spectrum in the complex plane, as a function of the correlations determined by the model at hand. We solve numerically our equations in several cases of interest, and show that the resulting spectra can take a surprisingly wide variety of shapes.
块状结构随机矩阵的谱边界
经济和生态模型可能极其复杂,其中包含大量的代理/物种,每个代理/物种都具有多个相互作用的动态量。为了理解这类系统的一般稳定性,我们定义并研究了一种有趣的新矩阵集合,它具有广泛的相关性,是椭圆集合的一般化。我们通过分析确定了复平面上特征值谱的边界,它是由手头模型确定的相关性的函数。我们用数值方法求解了几种相关情况下的方程,结果表明所得到的频谱具有令人惊讶的各种形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics Complexity
Journal of Physics Complexity Computer Science-Information Systems
CiteScore
4.30
自引率
11.10%
发文量
45
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信