{"title":"Ecologically sustainable retention forestry supports spider biodiversity in the Lower Morava UNESCO Biosphere Reserve","authors":"Tomáš Hamřík, Róbert Gallé, Ondřej Košulič","doi":"10.1111/icad.12765","DOIUrl":null,"url":null,"abstract":"<jats:list> <jats:list-item>Floodplain forests are among the most endangered ecosystems worldwide, even though they are hotspots for numerous taxa. The abandonment of traditional management and large‐scale timber extraction, such as clear‐cutting, has led to a decline in floodplain forest biodiversity. Retention forestry has the potential to facilitate the implementation of an ecologically sustainable forest management approach. Despite the increasing popularity of this method, its potential for spider diversity conservation, especially its comparison with the widespread practice of clear‐cutting, is still poorly studied.</jats:list-item> <jats:list-item>We studied the short‐term effect of forestry treatments (dispersed retention with 60% retained trees and clear‐cutting) on the diversity of ground‐dwelling spiders in the floodplain forests along the Lower Morava (March) and Dyje (Thaya) rivers in the Czech Republic. Spiders were sampled using pitfall traps during 2021 (pre‐harvest year) and 2022 (post‐harvest year).</jats:list-item> <jats:list-item>A total of 10,005 specimens from 167 species were recorded. Both forestry treatments simplified habitat structure compared with pre‐harvest conditions, resulting in lower beta‐diversity within sites. However, dispersed retention had higher alpha‐ and beta‐diversity than clear‐cuts, indicating that retention provided a more complex‐structured habitat. Dispersed retention and clear‐cuts hosted distinct spider assemblages with characteristic indicator species. Species typical of open and significantly disturbed habitats preferred clear‐cuts, while species typical of forests and (semi‐) open habitats, including threatened species, showed a preference for dispersed retention.</jats:list-item> <jats:list-item>Our results demonstrated, for the first time, that dispersed retention forestry could serve as an effective management tool for conserving the ground‐dwelling assemblages of spiders in floodplain forests.</jats:list-item> </jats:list>","PeriodicalId":13640,"journal":{"name":"Insect Conservation and Diversity","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Conservation and Diversity","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/icad.12765","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Floodplain forests are among the most endangered ecosystems worldwide, even though they are hotspots for numerous taxa. The abandonment of traditional management and large‐scale timber extraction, such as clear‐cutting, has led to a decline in floodplain forest biodiversity. Retention forestry has the potential to facilitate the implementation of an ecologically sustainable forest management approach. Despite the increasing popularity of this method, its potential for spider diversity conservation, especially its comparison with the widespread practice of clear‐cutting, is still poorly studied.We studied the short‐term effect of forestry treatments (dispersed retention with 60% retained trees and clear‐cutting) on the diversity of ground‐dwelling spiders in the floodplain forests along the Lower Morava (March) and Dyje (Thaya) rivers in the Czech Republic. Spiders were sampled using pitfall traps during 2021 (pre‐harvest year) and 2022 (post‐harvest year).A total of 10,005 specimens from 167 species were recorded. Both forestry treatments simplified habitat structure compared with pre‐harvest conditions, resulting in lower beta‐diversity within sites. However, dispersed retention had higher alpha‐ and beta‐diversity than clear‐cuts, indicating that retention provided a more complex‐structured habitat. Dispersed retention and clear‐cuts hosted distinct spider assemblages with characteristic indicator species. Species typical of open and significantly disturbed habitats preferred clear‐cuts, while species typical of forests and (semi‐) open habitats, including threatened species, showed a preference for dispersed retention.Our results demonstrated, for the first time, that dispersed retention forestry could serve as an effective management tool for conserving the ground‐dwelling assemblages of spiders in floodplain forests.
期刊介绍:
To publish papers of the highest scientific quality within the general area of insect (and other arthropods) conservation and diversity covering topics ranging from ecological theory to practical management.
Papers are invited on the following topics: Conservation genetics; Extinction debt; Long-term conservation planning and implementation; Global implications of local or national conservation actions; Management responses of species and communities; Captive breeding programs; Comparisons of restored and natural habitats; Biogeography; Global biodiversity; Metapopulation dynamics; Climate change: impacts on distributions and range; Invasive species: impacts and control; Effects of pollution; Genetic threats to diversity by introgression; Effects of fragmentation on diversity and distribution; Impact of agricultural and forestry practices on biodiversity; Enhancing urban environments for diversity and protection; Biodiversity action plans: can we scale up from insects?; Effectiveness and choice of indicator species; Soil biodiversity and interactions with above-ground biodiversity; Ecological interactions at local levels; Ecological and evolutionary factors influencing diversity and local, regional and global scales; Sustainable livelihoods and training on the ground; Integrating science and policy.