{"title":"Transformer in reinforcement learning for decision-making: a survey","authors":"Weilin Yuan, Jiaxing Chen, Shaofei Chen, Dawei Feng, Zhenzhen Hu, Peng Li, Weiwei Zhao","doi":"10.1631/fitee.2300548","DOIUrl":null,"url":null,"abstract":"<p>Reinforcement learning (RL) has become a dominant decision-making paradigm and has achieved notable success in many real-world applications. Notably, deep neural networks play a crucial role in unlocking RL’s potential in large-scale decision-making tasks. Inspired by current major success of Transformer in natural language processing and computer vision, numerous bottlenecks have been overcome by combining Transformer with RL for decision-making. This paper presents a multiangle systematic survey of various Transformer-based RL (TransRL) models applied in decision-making tasks, including basic models, advanced algorithms, representative implementation instances, typical applications, and known challenges. Our work aims to provide insights into problems that inherently arise with the current RL approaches, and examines how we can address them with better TransRL models. To our knowledge, we are the first to present a comprehensive review of the recent Transformer research developments in RL for decision-making. We hope that this survey provides a comprehensive review of TransRL models and inspires the RL community in its pursuit of future directions. To keep track of the rapid TransRL developments in the decision-making domains, we summarize the latest papers and their open-source implementations at https://github.com/williamyuanv0/Transformer-in-Reinforcement-Learning-for-Decision-Making-A-Survey.</p>","PeriodicalId":12608,"journal":{"name":"Frontiers of Information Technology & Electronic Engineering","volume":"24 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Information Technology & Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1631/fitee.2300548","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Reinforcement learning (RL) has become a dominant decision-making paradigm and has achieved notable success in many real-world applications. Notably, deep neural networks play a crucial role in unlocking RL’s potential in large-scale decision-making tasks. Inspired by current major success of Transformer in natural language processing and computer vision, numerous bottlenecks have been overcome by combining Transformer with RL for decision-making. This paper presents a multiangle systematic survey of various Transformer-based RL (TransRL) models applied in decision-making tasks, including basic models, advanced algorithms, representative implementation instances, typical applications, and known challenges. Our work aims to provide insights into problems that inherently arise with the current RL approaches, and examines how we can address them with better TransRL models. To our knowledge, we are the first to present a comprehensive review of the recent Transformer research developments in RL for decision-making. We hope that this survey provides a comprehensive review of TransRL models and inspires the RL community in its pursuit of future directions. To keep track of the rapid TransRL developments in the decision-making domains, we summarize the latest papers and their open-source implementations at https://github.com/williamyuanv0/Transformer-in-Reinforcement-Learning-for-Decision-Making-A-Survey.
期刊介绍:
Frontiers of Information Technology & Electronic Engineering (ISSN 2095-9184, monthly), formerly known as Journal of Zhejiang University SCIENCE C (Computers & Electronics) (2010-2014), is an international peer-reviewed journal launched by Chinese Academy of Engineering (CAE) and Zhejiang University, co-published by Springer & Zhejiang University Press. FITEE is aimed to publish the latest implementation of applications, principles, and algorithms in the broad area of Electrical and Electronic Engineering, including but not limited to Computer Science, Information Sciences, Control, Automation, Telecommunications. There are different types of articles for your choice, including research articles, review articles, science letters, perspective, new technical notes and methods, etc.