Polynomial worst-case iteration complexity of quasi-Newton primal-dual interior point algorithms for linear programming

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jacek Gondzio, Francisco N. C. Sobral
{"title":"Polynomial worst-case iteration complexity of quasi-Newton primal-dual interior point algorithms for linear programming","authors":"Jacek Gondzio, Francisco N. C. Sobral","doi":"10.1007/s10589-024-00584-6","DOIUrl":null,"url":null,"abstract":"<p>Quasi-Newton methods are well known techniques for large-scale numerical optimization. They use an approximation of the Hessian in optimization problems or the Jacobian in system of nonlinear equations. In the Interior Point context, quasi-Newton algorithms compute low-rank updates of the matrix associated with the Newton systems, instead of computing it from scratch at every iteration. In this work, we show that a simplified quasi-Newton primal-dual interior point algorithm for linear programming, which alternates between Newton and quasi-Newton iterations, enjoys polynomial worst-case iteration complexity. Feasible and infeasible cases of the algorithm are considered and the most common neighborhoods of the central path are analyzed. To the best of our knowledge, this is the first attempt to deliver polynomial worst-case iteration complexity bounds for these methods. Unsurprisingly, the worst-case complexity results obtained when quasi-Newton directions are used are worse than their counterparts when Newton directions are employed. However, quasi-Newton updates are very attractive for large-scale optimization problems where the cost of factorizing the matrices is much higher than the cost of solving linear systems.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10589-024-00584-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Quasi-Newton methods are well known techniques for large-scale numerical optimization. They use an approximation of the Hessian in optimization problems or the Jacobian in system of nonlinear equations. In the Interior Point context, quasi-Newton algorithms compute low-rank updates of the matrix associated with the Newton systems, instead of computing it from scratch at every iteration. In this work, we show that a simplified quasi-Newton primal-dual interior point algorithm for linear programming, which alternates between Newton and quasi-Newton iterations, enjoys polynomial worst-case iteration complexity. Feasible and infeasible cases of the algorithm are considered and the most common neighborhoods of the central path are analyzed. To the best of our knowledge, this is the first attempt to deliver polynomial worst-case iteration complexity bounds for these methods. Unsurprisingly, the worst-case complexity results obtained when quasi-Newton directions are used are worse than their counterparts when Newton directions are employed. However, quasi-Newton updates are very attractive for large-scale optimization problems where the cost of factorizing the matrices is much higher than the cost of solving linear systems.

Abstract Image

线性规划准牛顿原始双内点算法的多项式最坏迭代复杂度
准牛顿方法是众所周知的大规模数值优化技术。它们在优化问题中使用 Hessian 近似值,在非线性方程组中使用 Jacobian 近似值。在内点法的背景下,准牛顿算法计算与牛顿系统相关的矩阵的低秩更新,而不是在每次迭代时从头开始计算。在这项研究中,我们展示了一种简化的线性规划准牛顿原始双内点算法,它交替进行牛顿和准牛顿迭代,在最坏情况下具有多项式迭代复杂度。该算法考虑了可行和不可行的情况,并分析了中心路径最常见的邻域。据我们所知,这是首次尝试为这些方法提供多项式最坏情况迭代复杂度边界。不出所料,使用准牛顿方向时获得的最坏情况复杂度结果比使用牛顿方向时的结果要差。然而,准牛顿更新对大规模优化问题非常有吸引力,因为在这些问题中,矩阵因式分解的成本远远高于求解线性系统的成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信