Stochastic Path-Dependent Volatility Models for Price-Storage Dynamics in Natural Gas Markets and Discrete-Time Swing Option Pricing

Jinniao Qiu, Antony Ware, Yang Yang
{"title":"Stochastic Path-Dependent Volatility Models for Price-Storage Dynamics in Natural Gas Markets and Discrete-Time Swing Option Pricing","authors":"Jinniao Qiu, Antony Ware, Yang Yang","doi":"arxiv-2406.16400","DOIUrl":null,"url":null,"abstract":"This paper is devoted to the price-storage dynamics in natural gas markets. A\nnovel stochastic path-dependent volatility model is introduced with\npath-dependence in both price volatility and storage increments. Model\ncalibrations are conducted for both the price and storage dynamics. Further, we\ndiscuss the pricing problem of discrete-time swing options using the dynamic\nprogramming principle, and a deep learning-based method is proposed for\nnumerical approximations. A numerical algorithm is provided, followed by a\nconvergence analysis result for the deep-learning approach.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.16400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is devoted to the price-storage dynamics in natural gas markets. A novel stochastic path-dependent volatility model is introduced with path-dependence in both price volatility and storage increments. Model calibrations are conducted for both the price and storage dynamics. Further, we discuss the pricing problem of discrete-time swing options using the dynamic programming principle, and a deep learning-based method is proposed for numerical approximations. A numerical algorithm is provided, followed by a convergence analysis result for the deep-learning approach.
天然气市场价格-存储动态和离散时间波动期权定价的随机路径依赖波动模型
本文主要研究天然气市场的价格-储存动态。本文引入了一个新颖的随机路径依赖波动模型,该模型在价格波动和储量增量方面都具有路径依赖性。对价格和储量动态都进行了模型校准。此外,我们利用动态编程原理讨论了离散时间摆动期权的定价问题,并提出了一种基于深度学习的数值逼近方法。我们提供了一种数值算法,并给出了深度学习方法的收敛性分析结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信