{"title":"Dissipation-Driven Superradiant Phase Transition of a Two-Dimensional Bose–Einstein Condensate in a Double Cavity","authors":"Bo-Hao Wu, Xin-Xin Yang, Yu Chen, Wei Zhang","doi":"10.1088/0256-307x/41/6/064201","DOIUrl":null,"url":null,"abstract":"We study superradiant phase transitions in a hybrid system of a two-dimensional Bose–Einstein condensate of atoms and two cavities arranged with a tilt angle. By adjusting the loss rate of cavities, we map out the phase diagram of steady states within a mean field framework. It is found that when the loss rates of the two cavities are different, superradiant transitions may not occur at the same time in the two cavities. A first-order phase transition is observed between the states with only one cavity in superradiance and both in superradiance. In the case that both cavities are superradiant, a net photon current is observed flowing from the cavity with small decay rate to the one with large decay rate. The photon current shows a non-monotonic dependence on the loss rate difference, owing to the competition of photon number difference and cavity field phase difference. Our findings can be realized and detected in experiments.","PeriodicalId":10344,"journal":{"name":"Chinese Physics Letters","volume":"15 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/0256-307x/41/6/064201","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We study superradiant phase transitions in a hybrid system of a two-dimensional Bose–Einstein condensate of atoms and two cavities arranged with a tilt angle. By adjusting the loss rate of cavities, we map out the phase diagram of steady states within a mean field framework. It is found that when the loss rates of the two cavities are different, superradiant transitions may not occur at the same time in the two cavities. A first-order phase transition is observed between the states with only one cavity in superradiance and both in superradiance. In the case that both cavities are superradiant, a net photon current is observed flowing from the cavity with small decay rate to the one with large decay rate. The photon current shows a non-monotonic dependence on the loss rate difference, owing to the competition of photon number difference and cavity field phase difference. Our findings can be realized and detected in experiments.
期刊介绍:
Chinese Physics Letters provides rapid publication of short reports and important research in all fields of physics and is published by the Chinese Physical Society and hosted online by IOP Publishing.