Birth, Death, and Horizontal Flight: Malthusian flocks with an easy plane in three dimensions

John Toner
{"title":"Birth, Death, and Horizontal Flight: Malthusian flocks with an easy plane in three dimensions","authors":"John Toner","doi":"arxiv-2407.03071","DOIUrl":null,"url":null,"abstract":"I formulate the theory of three dimensional \"Malthusian flocks\" -- i.e.,\ncoherently moving collections of self-propelled entities (such as living\ncreatures) which are being \"born\" and \"dying\" during their motion -- whose\nconstituents all have a preference for having their velocity vectors lie\nparallel to the same two-dimensional plane. I determine the universal scaling\nexponents characterizing such systems exactly, finding that the dynamical\nexponent $z=3/2$, the \"anisotropy\" exponent $\\zeta=3/4$, and the \"roughness\"\nexponent $\\chi=-1/2$. I also give the scaling laws implied by these exponents.","PeriodicalId":501305,"journal":{"name":"arXiv - PHYS - Adaptation and Self-Organizing Systems","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Adaptation and Self-Organizing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.03071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

I formulate the theory of three dimensional "Malthusian flocks" -- i.e., coherently moving collections of self-propelled entities (such as living creatures) which are being "born" and "dying" during their motion -- whose constituents all have a preference for having their velocity vectors lie parallel to the same two-dimensional plane. I determine the universal scaling exponents characterizing such systems exactly, finding that the dynamical exponent $z=3/2$, the "anisotropy" exponent $\zeta=3/4$, and the "roughness" exponent $\chi=-1/2$. I also give the scaling laws implied by these exponents.
出生、死亡和水平飞行:马尔萨斯羊群的三维简易平面
我提出了三维 "马尔萨斯羊群 "理论--即在运动过程中 "出生 "和 "死亡 "的自我推进实体(如生物)的连贯运动集合--其组成成分都倾向于让它们的速度矢量平行于同一个二维平面。我精确地确定了表征这类系统的通用缩放指数,发现动力学指数$z=3/2$,"各向异性 "指数$\zeta=3/4$,以及 "粗糙度 "指数$\chi=-1/2$。我还给出了这些指数所隐含的缩放定律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信