Horizontal Fourier Transform of the Polyanalytic Fock Kernel

IF 0.8 3区 数学 Q2 MATHEMATICS
Erick Lee-Guzmán, Egor A. Maximenko, Gerardo Ramos-Vazquez, Armando Sánchez-Nungaray
{"title":"Horizontal Fourier Transform of the Polyanalytic Fock Kernel","authors":"Erick Lee-Guzmán, Egor A. Maximenko, Gerardo Ramos-Vazquez, Armando Sánchez-Nungaray","doi":"10.1007/s00020-024-02772-9","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(n,m\\ge 1\\)</span> and <span>\\(\\alpha &gt;0\\)</span>. We denote by <span>\\(\\mathcal {F}_{\\alpha ,m}\\)</span> the <i>m</i>-analytic Bargmann–Segal–Fock space, i.e., the Hilbert space of all <i>m</i>-analytic functions defined on <span>\\(\\mathbb {C}^n\\)</span> and square integrables with respect to the Gaussian weight <span>\\(\\exp (-\\alpha |z|^2)\\)</span>. We study the von Neumann algebra <span>\\(\\mathcal {A}\\)</span> of bounded linear operators acting in <span>\\(\\mathcal {F}_{\\alpha ,m}\\)</span> and commuting with all “horizontal” Weyl translations, i.e., Weyl unitary operators associated to the elements of <span>\\(\\mathbb {R}^n\\)</span>. The reproducing kernel of <span>\\(\\mathcal {F}_{1,m}\\)</span> was computed by Youssfi [Polyanalytic reproducing kernels in <span>\\(\\mathbb {C}^n\\)</span>, Complex Anal. Synerg., 2021, 7, 28]. Multiplying the elements of <span>\\(\\mathcal {F}_{\\alpha ,m}\\)</span> by an appropriate weight, we transform this space into another reproducing kernel Hilbert space whose kernel <i>K</i> is invariant under horizontal translations. Using the well-known Fourier connection between Laguerre and Hermite functions, we compute the Fourier transform of <i>K</i> in the “horizontal direction” and decompose it into the sum of <i>d</i> products of Hermite functions, with <span>\\(d=\\left( {\\begin{array}{c}n+m-1\\\\ n\\end{array}}\\right) \\)</span>. Finally, applying the scheme proposed by Herrera-Yañez, Maximenko, Ramos-Vazquez [Translation-invariant operators in reproducing kernel Hilbert spaces, Integr. Equ. Oper. Theory, 2022, 94, 31], we show that <span>\\(\\mathcal {F}_{\\alpha ,m}\\)</span> is isometrically isomorphic to the space of vector-functions <span>\\(L^2(\\mathbb {R}^n)^d\\)</span>, and <span>\\(\\mathcal {A}\\)</span> is isometrically isomorphic to the algebra of matrix-functions <span>\\(L^\\infty (\\mathbb {R}^n)^{d\\times d}\\)</span>.</p>","PeriodicalId":13658,"journal":{"name":"Integral Equations and Operator Theory","volume":"5 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integral Equations and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00020-024-02772-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(n,m\ge 1\) and \(\alpha >0\). We denote by \(\mathcal {F}_{\alpha ,m}\) the m-analytic Bargmann–Segal–Fock space, i.e., the Hilbert space of all m-analytic functions defined on \(\mathbb {C}^n\) and square integrables with respect to the Gaussian weight \(\exp (-\alpha |z|^2)\). We study the von Neumann algebra \(\mathcal {A}\) of bounded linear operators acting in \(\mathcal {F}_{\alpha ,m}\) and commuting with all “horizontal” Weyl translations, i.e., Weyl unitary operators associated to the elements of \(\mathbb {R}^n\). The reproducing kernel of \(\mathcal {F}_{1,m}\) was computed by Youssfi [Polyanalytic reproducing kernels in \(\mathbb {C}^n\), Complex Anal. Synerg., 2021, 7, 28]. Multiplying the elements of \(\mathcal {F}_{\alpha ,m}\) by an appropriate weight, we transform this space into another reproducing kernel Hilbert space whose kernel K is invariant under horizontal translations. Using the well-known Fourier connection between Laguerre and Hermite functions, we compute the Fourier transform of K in the “horizontal direction” and decompose it into the sum of d products of Hermite functions, with \(d=\left( {\begin{array}{c}n+m-1\\ n\end{array}}\right) \). Finally, applying the scheme proposed by Herrera-Yañez, Maximenko, Ramos-Vazquez [Translation-invariant operators in reproducing kernel Hilbert spaces, Integr. Equ. Oper. Theory, 2022, 94, 31], we show that \(\mathcal {F}_{\alpha ,m}\) is isometrically isomorphic to the space of vector-functions \(L^2(\mathbb {R}^n)^d\), and \(\mathcal {A}\) is isometrically isomorphic to the algebra of matrix-functions \(L^\infty (\mathbb {R}^n)^{d\times d}\).

Abstract Image

多解析 Fock 内核的水平傅里叶变换
让(n,mge 1)和(\alpha >0\).我们用 \(\mathcal {F}_{\alpha ,m}\) 表示 m-analytic Bargmann-Segal-Fock 空间,即定义在 \(\mathbb {C}^n\) 上的所有 m-analytic 函数的希尔伯特空间,以及关于高斯权重 \(\exp (-\alpha |z|^2)\) 的平方积分。我们研究作用于\(\mathcal {F}_{\alpha ,m}\)并与所有 "水平 "韦尔平移(即与\(\mathbb {R}^n\)元素相关的韦尔单元算子)共相的有界线性算子的冯-诺依曼代数\(\mathcal {A}\) 。Youssfi [Polyanalytic reproducing kernels in \(\mathbb {C}^n\), Complex Anal.Synerg., 2021, 7, 28]。将 \(\mathcal {F}_{\alpha ,m}\) 的元素乘以适当的权重,我们就能将这个空间转化为另一个重现核希尔伯特空间,其核 K 在水平平移下是不变的。利用拉盖尔函数和赫米特函数之间著名的傅里叶连接,我们计算 K 在 "水平方向 "上的傅里叶变换,并将其分解为赫米特函数的 d 个乘积之和,d=left({\begin{array}{c}n+m-1\ nend\array}\right) \)。最后,应用 Herrera-Yañez、Maximenko、Ramos-Vazquez [Translation-invariant operators in reproducing kernel Hilbert spaces, Integr.Equ.Oper.Theory, 2022, 94, 31],我们证明了 \(\mathcal {F}_{\alpha ,m}\) 与向量函数空间 \(L^2(\mathbb {R}^n)^d\) 是同构的、而 \(\mathcal {A}\) 与矩阵函数代数 \(L^\infty (\mathbb {R}^n)^{d\times d}\) 同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: Integral Equations and Operator Theory (IEOT) is devoted to the publication of current research in integral equations, operator theory and related topics with emphasis on the linear aspects of the theory. The journal reports on the full scope of current developments from abstract theory to numerical methods and applications to analysis, physics, mechanics, engineering and others. The journal consists of two sections: a main section consisting of refereed papers and a second consisting of short announcements of important results, open problems, information, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信