n-convexity and weighted majorization with applications to f-divergences and Zipf–Mandelbrot law

Pub Date : 2024-07-03 DOI:10.1007/s10998-024-00601-5
Slavica Ivelić Bradanović, Ɖilda Pečarić, Josip Pečarić
{"title":"n-convexity and weighted majorization with applications to f-divergences and Zipf–Mandelbrot law","authors":"Slavica Ivelić Bradanović, Ɖilda Pečarić, Josip Pečarić","doi":"10.1007/s10998-024-00601-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper we obtain refinement of Sherman’s generalization of classical majorization inequality for convex functions (2-convex functions). Using some nice properties of Green’s functions we introduce new identities that include Sherman’s difference, deduced from Sherman’s inequality, which enable us to extend Sherman’s results to the class of convex functions of higher order, i.e. to <i>n</i>-convex functions (<span>\\(n\\ge 3\\)</span>). We connect this approach with Csiszár <i>f</i>-divergence and specified divergences as the Kullback–Leibler divergence, Hellinger divergence, Harmonic divergence, Bhattacharya distance, Triangular discrimination, Rényi divergence and derive new estimates for them. We also observe results in the context of the Zipf–Mandelbrot law and its special form Zipf’s law and give one linguistic example using experimentally obtained values of coefficients from Zipf’s law assigned to different languages.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-024-00601-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we obtain refinement of Sherman’s generalization of classical majorization inequality for convex functions (2-convex functions). Using some nice properties of Green’s functions we introduce new identities that include Sherman’s difference, deduced from Sherman’s inequality, which enable us to extend Sherman’s results to the class of convex functions of higher order, i.e. to n-convex functions (\(n\ge 3\)). We connect this approach with Csiszár f-divergence and specified divergences as the Kullback–Leibler divergence, Hellinger divergence, Harmonic divergence, Bhattacharya distance, Triangular discrimination, Rényi divergence and derive new estimates for them. We also observe results in the context of the Zipf–Mandelbrot law and its special form Zipf’s law and give one linguistic example using experimentally obtained values of coefficients from Zipf’s law assigned to different languages.

分享
查看原文
n-凸性和加权大化在 f-发散和 Zipf-Mandelbrot 定律中的应用
在本文中,我们对谢尔曼对凸函数(2-凸函数)的经典大化不等式的推广进行了改进。利用格林函数的一些很好的性质,我们引入了从谢尔曼不等式推导出的包含谢尔曼差分的新等式,这使我们能够将谢尔曼的结果扩展到更高阶的凸函数类,即 n 个凸函数(\(n\ge 3\) )。我们将这一方法与 Csiszár f-divergence 以及 Kullback-Leibler divergence、Hellinger divergence、Harmonic divergence、Bhattacharya distance、Triangular discrimination、Rényi divergence 等特定发散联系起来,并推导出它们的新估计值。我们还观察了 Zipf-Mandelbrot 定律及其特殊形式 Zipf 定律的结果,并用实验获得的 Zipf 定律系数值为不同语言提供了一个语言实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信