Slavica Ivelić Bradanović, Ɖilda Pečarić, Josip Pečarić
{"title":"n-convexity and weighted majorization with applications to f-divergences and Zipf–Mandelbrot law","authors":"Slavica Ivelić Bradanović, Ɖilda Pečarić, Josip Pečarić","doi":"10.1007/s10998-024-00601-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper we obtain refinement of Sherman’s generalization of classical majorization inequality for convex functions (2-convex functions). Using some nice properties of Green’s functions we introduce new identities that include Sherman’s difference, deduced from Sherman’s inequality, which enable us to extend Sherman’s results to the class of convex functions of higher order, i.e. to <i>n</i>-convex functions (<span>\\(n\\ge 3\\)</span>). We connect this approach with Csiszár <i>f</i>-divergence and specified divergences as the Kullback–Leibler divergence, Hellinger divergence, Harmonic divergence, Bhattacharya distance, Triangular discrimination, Rényi divergence and derive new estimates for them. We also observe results in the context of the Zipf–Mandelbrot law and its special form Zipf’s law and give one linguistic example using experimentally obtained values of coefficients from Zipf’s law assigned to different languages.\n</p>","PeriodicalId":49706,"journal":{"name":"Periodica Mathematica Hungarica","volume":"31 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Mathematica Hungarica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10998-024-00601-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we obtain refinement of Sherman’s generalization of classical majorization inequality for convex functions (2-convex functions). Using some nice properties of Green’s functions we introduce new identities that include Sherman’s difference, deduced from Sherman’s inequality, which enable us to extend Sherman’s results to the class of convex functions of higher order, i.e. to n-convex functions (\(n\ge 3\)). We connect this approach with Csiszár f-divergence and specified divergences as the Kullback–Leibler divergence, Hellinger divergence, Harmonic divergence, Bhattacharya distance, Triangular discrimination, Rényi divergence and derive new estimates for them. We also observe results in the context of the Zipf–Mandelbrot law and its special form Zipf’s law and give one linguistic example using experimentally obtained values of coefficients from Zipf’s law assigned to different languages.
期刊介绍:
Periodica Mathematica Hungarica is devoted to publishing research articles in all areas of pure and applied mathematics as well as theoretical computer science. To be published in the Periodica, a paper must be correct, new, and significant. Very strong submissions (upon the consent of the author) will be redirected to Acta Mathematica Hungarica.
Periodica Mathematica Hungarica is the journal of the Hungarian Mathematical Society (János Bolyai Mathematical Society). The main profile of the journal is in pure mathematics, being open to applied mathematical papers with significant mathematical content.