SinGRAV: Learning a Generative Radiance Volume from a Single Natural Scene

IF 1.2 3区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Yu-Jie Wang, Xue-Lin Chen, Bao-Quan Chen
{"title":"SinGRAV: Learning a Generative Radiance Volume from a Single Natural Scene","authors":"Yu-Jie Wang, Xue-Lin Chen, Bao-Quan Chen","doi":"10.1007/s11390-023-3596-9","DOIUrl":null,"url":null,"abstract":"<p>We present SinGRAV, an attempt to learn a generative radiance volume from multi-view observations of a single natural scene, in stark contrast to existing category-level 3D generative models that learn from images of many object-centric scenes. Inspired by SinGAN, we also learn the internal distribution of the input scene, which necessitates our key designs w.r.t. the scene representation and network architecture. Unlike popular multi-layer perceptrons (MLP)-based architectures, we particularly employ convolutional generators and discriminators, which inherently possess spatial locality bias, to operate over voxelized volumes for learning the internal distribution over a plethora of overlapping regions. On the other hand, localizing the adversarial generators and discriminators over confined areas with limited receptive fields easily leads to highly implausible geometric structures in the spatial. Our remedy is to use spatial inductive bias and joint discrimination on geometric clues in the form of 2D depth maps. This strategy is effective in improving spatial arrangement while incurring negligible additional computational cost. Experimental results demonstrate the ability of SinGRAV in generating plausible and diverse variations from a single scene, the merits of SinGRAV over state-of-the-art generative neural scene models, and the versatility of SinGRAV by its use in a variety of applications. Code and data will be released to facilitate further research.</p>","PeriodicalId":50222,"journal":{"name":"Journal of Computer Science and Technology","volume":"107 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11390-023-3596-9","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

We present SinGRAV, an attempt to learn a generative radiance volume from multi-view observations of a single natural scene, in stark contrast to existing category-level 3D generative models that learn from images of many object-centric scenes. Inspired by SinGAN, we also learn the internal distribution of the input scene, which necessitates our key designs w.r.t. the scene representation and network architecture. Unlike popular multi-layer perceptrons (MLP)-based architectures, we particularly employ convolutional generators and discriminators, which inherently possess spatial locality bias, to operate over voxelized volumes for learning the internal distribution over a plethora of overlapping regions. On the other hand, localizing the adversarial generators and discriminators over confined areas with limited receptive fields easily leads to highly implausible geometric structures in the spatial. Our remedy is to use spatial inductive bias and joint discrimination on geometric clues in the form of 2D depth maps. This strategy is effective in improving spatial arrangement while incurring negligible additional computational cost. Experimental results demonstrate the ability of SinGRAV in generating plausible and diverse variations from a single scene, the merits of SinGRAV over state-of-the-art generative neural scene models, and the versatility of SinGRAV by its use in a variety of applications. Code and data will be released to facilitate further research.

SinGRAV: 从单一自然场景中学习生成辐射量
SinGRAV 尝试从单一自然场景的多视角观测中学习生成辐射量,这与现有的从许多以物体为中心的场景图像中学习的类别级三维生成模型形成了鲜明对比。受 SinGAN 的启发,我们还学习了输入场景的内部分布,这就需要我们在场景表示和网络架构方面进行关键设计。与流行的基于多层感知器(MLP)的架构不同,我们特别采用了卷积生成器和判别器,它们本身具有空间定位偏差,可在体素化体积上运行,以学习大量重叠区域的内部分布。另一方面,将对抗发生器和鉴别器定位在有限感受野的封闭区域,很容易导致空间几何结构非常不合理。我们的补救措施是利用空间归纳偏差和二维深度图形式的几何线索进行联合判别。这种策略能有效改善空间排列,同时产生的额外计算成本几乎可以忽略不计。实验结果表明,SinGRAV 有能力从单一场景中生成可信且多样的变化,与最先进的生成神经场景模型相比,SinGRAV 更胜一筹,而且 SinGRAV 在各种应用中都有很好的通用性。我们将发布代码和数据,以促进进一步的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computer Science and Technology
Journal of Computer Science and Technology 工程技术-计算机:软件工程
CiteScore
4.00
自引率
0.00%
发文量
2255
审稿时长
9.8 months
期刊介绍: Journal of Computer Science and Technology (JCST), the first English language journal in the computer field published in China, is an international forum for scientists and engineers involved in all aspects of computer science and technology to publish high quality and refereed papers. Papers reporting original research and innovative applications from all parts of the world are welcome. Papers for publication in the journal are selected through rigorous peer review, to ensure originality, timeliness, relevance, and readability. While the journal emphasizes the publication of previously unpublished materials, selected conference papers with exceptional merit that require wider exposure are, at the discretion of the editors, also published, provided they meet the journal''s peer review standards. The journal also seeks clearly written survey and review articles from experts in the field, to promote insightful understanding of the state-of-the-art and technology trends. Topics covered by Journal of Computer Science and Technology include but are not limited to: -Computer Architecture and Systems -Artificial Intelligence and Pattern Recognition -Computer Networks and Distributed Computing -Computer Graphics and Multimedia -Software Systems -Data Management and Data Mining -Theory and Algorithms -Emerging Areas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信