Efficient Shapley performance attribution for least-squares regression

IF 1.6 2区 数学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Logan Bell, Nikhil Devanathan, Stephen Boyd
{"title":"Efficient Shapley performance attribution for least-squares regression","authors":"Logan Bell, Nikhil Devanathan, Stephen Boyd","doi":"10.1007/s11222-024-10459-9","DOIUrl":null,"url":null,"abstract":"<p>We consider the performance of a least-squares regression model, as judged by out-of-sample <span>\\(R^2\\)</span>. Shapley values give a fair attribution of the performance of a model to its input features, taking into account interdependencies between features. Evaluating the Shapley values exactly requires solving a number of regression problems that is exponential in the number of features, so a Monte Carlo-type approximation is typically used. We focus on the special case of least-squares regression models, where several tricks can be used to compute and evaluate regression models efficiently. These tricks give a substantial speed up, allowing many more Monte Carlo samples to be evaluated, achieving better accuracy. We refer to our method as least-squares Shapley performance attribution (LS-SPA), and describe our open-source implementation.</p>","PeriodicalId":22058,"journal":{"name":"Statistics and Computing","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11222-024-10459-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the performance of a least-squares regression model, as judged by out-of-sample \(R^2\). Shapley values give a fair attribution of the performance of a model to its input features, taking into account interdependencies between features. Evaluating the Shapley values exactly requires solving a number of regression problems that is exponential in the number of features, so a Monte Carlo-type approximation is typically used. We focus on the special case of least-squares regression models, where several tricks can be used to compute and evaluate regression models efficiently. These tricks give a substantial speed up, allowing many more Monte Carlo samples to be evaluated, achieving better accuracy. We refer to our method as least-squares Shapley performance attribution (LS-SPA), and describe our open-source implementation.

Abstract Image

最小二乘回归的高效夏普利性能归因
我们通过样本外 \(R^2\)来判断最小二乘回归模型的性能。考虑到特征之间的相互依存关系,夏普利值可以将模型的性能公平地归因于其输入特征。精确评估夏普利值需要解决大量回归问题,而回归问题的数量与特征数量成指数关系,因此通常使用蒙特卡罗式近似方法。我们将重点放在最小二乘回归模型的特殊情况上,在这种情况下,可以使用几种技巧来高效计算和评估回归模型。这些技巧大大加快了计算速度,可以评估更多的蒙特卡罗样本,从而获得更高的精度。我们将这种方法称为最小二乘沙普利性能归因(LS-SPA),并介绍了我们的开源实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Statistics and Computing
Statistics and Computing 数学-计算机:理论方法
CiteScore
3.20
自引率
4.50%
发文量
93
审稿时长
6-12 weeks
期刊介绍: Statistics and Computing is a bi-monthly refereed journal which publishes papers covering the range of the interface between the statistical and computing sciences. In particular, it addresses the use of statistical concepts in computing science, for example in machine learning, computer vision and data analytics, as well as the use of computers in data modelling, prediction and analysis. Specific topics which are covered include: techniques for evaluating analytically intractable problems such as bootstrap resampling, Markov chain Monte Carlo, sequential Monte Carlo, approximate Bayesian computation, search and optimization methods, stochastic simulation and Monte Carlo, graphics, computer environments, statistical approaches to software errors, information retrieval, machine learning, statistics of databases and database technology, huge data sets and big data analytics, computer algebra, graphical models, image processing, tomography, inverse problems and uncertainty quantification. In addition, the journal contains original research reports, authoritative review papers, discussed papers, and occasional special issues on particular topics or carrying proceedings of relevant conferences. Statistics and Computing also publishes book review and software review sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信