Crystal orbital overlap population based on all-electron ab initio simulation with numeric atom-centered orbitals and its application to chemical-bonding analysis in Li-intercalated layered materials
IF 1.9 4区 材料科学Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
{"title":"Crystal orbital overlap population based on all-electron ab initio simulation with numeric atom-centered orbitals and its application to chemical-bonding analysis in Li-intercalated layered materials","authors":"Izumi Takahara, Kiyou Shibata, Teruyasu Mizoguchi","doi":"10.1088/1361-651x/ad4c82","DOIUrl":null,"url":null,"abstract":"Crystal orbital overlap population (COOP) is one of the effective tools for chemical-bonding analysis, and thus it has been utilized in the materials development and characterization. In this study, we developed a code to perform the COOP-based chemical-bonding analysis based on the wave function obtained from a first principles all-electron calculation with numeric atom-centered orbitals. The chemical-bonding analysis using the developed code was demonstrated for F<sub>2</sub>, Si, CaC<sub>6</sub>, and metals including Ti and Nb. Furthermore, we applied the method to analyze the chemical-bonding changes associated with a Li intercalation in three representative layered materials: graphite, MoS<sub>2</sub>, and ZrNCl, because of their great industrial importance, particularly for the applications in battery and superconducting materials. The COOP analysis provided some insights for understanding the intercalation mechanism and the stability of the intercalated materials from a chemical-bonding viewpoint.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":"56 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad4c82","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Crystal orbital overlap population (COOP) is one of the effective tools for chemical-bonding analysis, and thus it has been utilized in the materials development and characterization. In this study, we developed a code to perform the COOP-based chemical-bonding analysis based on the wave function obtained from a first principles all-electron calculation with numeric atom-centered orbitals. The chemical-bonding analysis using the developed code was demonstrated for F2, Si, CaC6, and metals including Ti and Nb. Furthermore, we applied the method to analyze the chemical-bonding changes associated with a Li intercalation in three representative layered materials: graphite, MoS2, and ZrNCl, because of their great industrial importance, particularly for the applications in battery and superconducting materials. The COOP analysis provided some insights for understanding the intercalation mechanism and the stability of the intercalated materials from a chemical-bonding viewpoint.
期刊介绍:
Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation.
Subject coverage:
Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.