A Local Search Algorithm for MaxSMT(LIA)

Xiang He, Bohan Li, Mengyu Zhao, Shaowei Cai
{"title":"A Local Search Algorithm for MaxSMT(LIA)","authors":"Xiang He, Bohan Li, Mengyu Zhao, Shaowei Cai","doi":"arxiv-2406.15782","DOIUrl":null,"url":null,"abstract":"MaxSAT modulo theories (MaxSMT) is an important generalization of\nSatisfiability modulo theories (SMT) with various applications. In this paper,\nwe focus on MaxSMT with the background theory of Linear Integer Arithmetic,\ndenoted as MaxSMT(LIA). We design the first local search algorithm for\nMaxSMT(LIA) called PairLS, based on the following novel ideas. A novel operator\ncalled pairwise operator is proposed for integer variables. It extends the\noriginal local search operator by simultaneously operating on two variables,\nenriching the search space. Moreover, a compensation-based picking heuristic is\nproposed to determine and distinguish the pairwise operations. Experiments are\nconducted to evaluate our algorithm on massive benchmarks. The results show\nthat our solver is competitive with state-of-the-art MaxSMT solvers.\nFurthermore, we also apply the pairwise operation to enhance the local search\nalgorithm of SMT, which shows its extensibility.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.15782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

MaxSAT modulo theories (MaxSMT) is an important generalization of Satisfiability modulo theories (SMT) with various applications. In this paper, we focus on MaxSMT with the background theory of Linear Integer Arithmetic, denoted as MaxSMT(LIA). We design the first local search algorithm for MaxSMT(LIA) called PairLS, based on the following novel ideas. A novel operator called pairwise operator is proposed for integer variables. It extends the original local search operator by simultaneously operating on two variables, enriching the search space. Moreover, a compensation-based picking heuristic is proposed to determine and distinguish the pairwise operations. Experiments are conducted to evaluate our algorithm on massive benchmarks. The results show that our solver is competitive with state-of-the-art MaxSMT solvers. Furthermore, we also apply the pairwise operation to enhance the local search algorithm of SMT, which shows its extensibility.
MaxSMT 的局部搜索算法(LIA)
MaxSAT 模态理论(MaxSMT)是可满足性模态理论(SMT)的一个重要泛化,有着广泛的应用。本文以线性整数算术为背景理论,重点研究 MaxSMT,简称 MaxSMT(LIA)。我们基于以下新思想,设计了第一个用于 MaxSMT(LIA)的局部搜索算法 PairLS。针对整数变量,我们提出了一种新颖的算子,称为成对算子。它扩展了最初的局部搜索算法,同时对两个变量进行操作,丰富了搜索空间。此外,还提出了一种基于补偿的选取启发式来确定和区分成对操作。我们在大量基准上进行了实验,以评估我们的算法。结果表明,我们的求解器与最先进的 MaxSMT 求解器相比具有很强的竞争力。此外,我们还将成对操作用于增强 SMT 的局部搜索算法,这显示了它的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信