DNLSAT: A Dynamic Variable Ordering MCSAT Framework for Nonlinear Real Arithmetic

Zhonghan Wang
{"title":"DNLSAT: A Dynamic Variable Ordering MCSAT Framework for Nonlinear Real Arithmetic","authors":"Zhonghan Wang","doi":"arxiv-2406.18964","DOIUrl":null,"url":null,"abstract":"Satisfiability modulo nonlinear real arithmetic theory (SMT(NRA)) solving is\nessential to multiple applications, including program verification, program\nsynthesis and software testing. In this context, recently model constructing\nsatisfiability calculus (MCSAT) has been invented to directly search for models\nin the theory space. Although following papers discussed practical directions\nand updates on MCSAT, less attention has been paid to the detailed\nimplementation. In this paper, we present an efficient implementation of\ndynamic variable orderings of MCSAT, called dnlsat. We show carefully designed\ndata structures and promising mechanisms, such as branching heuristic, restart,\nand lemma management. Besides, we also give a theoretical study of potential\ninfluences brought by the dynamic variablr ordering. The experimental\nevaluation shows that dnlsat accelerates the solving speed and solves more\nsatisfiable instances than other state-of-the-art SMT solvers. Demonstration Video: https://youtu.be/T2Z0gZQjnPw Code: https://github.com/yogurt-shadow/dnlsat/tree/master/code Benchmark https://zenodo.org/records/10607722/files/QF_NRA.tar.zst?download=1","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.18964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Satisfiability modulo nonlinear real arithmetic theory (SMT(NRA)) solving is essential to multiple applications, including program verification, program synthesis and software testing. In this context, recently model constructing satisfiability calculus (MCSAT) has been invented to directly search for models in the theory space. Although following papers discussed practical directions and updates on MCSAT, less attention has been paid to the detailed implementation. In this paper, we present an efficient implementation of dynamic variable orderings of MCSAT, called dnlsat. We show carefully designed data structures and promising mechanisms, such as branching heuristic, restart, and lemma management. Besides, we also give a theoretical study of potential influences brought by the dynamic variablr ordering. The experimental evaluation shows that dnlsat accelerates the solving speed and solves more satisfiable instances than other state-of-the-art SMT solvers. Demonstration Video: https://youtu.be/T2Z0gZQjnPw Code: https://github.com/yogurt-shadow/dnlsat/tree/master/code Benchmark https://zenodo.org/records/10607722/files/QF_NRA.tar.zst?download=1
DNLSAT:非线性实数运算的动态变量排序 MCSAT 框架
可满足性模态非线性实数理论(SMT(NRA))求解在程序验证、程序合成和软件测试等多个应用领域都至关重要。在此背景下,最近发明了模型构造可满足性微积分(MCSAT)来直接搜索理论空间中的模型。尽管随后的论文讨论了 MCSAT 的实用方向和最新进展,但较少关注其具体实现。在本文中,我们提出了 MCSAT 动态变量排序的高效实现,称为 dnlsat。我们展示了精心设计的数据结构和有前途的机制,如分支启发式、重启和lemma管理。此外,我们还对动态变量排序带来的潜在影响进行了理论研究。实验评估表明,与其他最先进的 SMT 求解器相比,dnlsat 加快了求解速度,求解出了更多可满足的实例。演示视频:https://youtu.be/T2Z0gZQjnPw 代码:https://github.com/yogurt-shadow/dnlsat/tree/master/code 基准 https://zenodo.org/records/10607722/files/QF_NRA.tar.zst?download=1
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信