Global Well-Posedness and Exponential Decay of Strong Solution to the Three-Dimensional Nonhomogeneous Bénard System with Density-Dependent Viscosity and Vacuum

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Huanyuan Li, Jieqiong Liu
{"title":"Global Well-Posedness and Exponential Decay of Strong Solution to the Three-Dimensional Nonhomogeneous Bénard System with Density-Dependent Viscosity and Vacuum","authors":"Huanyuan Li,&nbsp;Jieqiong Liu","doi":"10.1007/s10440-024-00669-8","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we are concerned with the three-dimensional nonhomogeneous Bénard system with density-dependent viscosity in bounded domain. The global well-posedness of strong solution is established, provided that the initial total mass <span>\\(\\|\\rho _{0}\\|_{L^{1}}\\)</span> is suitably small. In particular, the initial velocity and temperature can be arbitrarily large. Moreover, the exponential decay of strong solution is also obtained. It is worth noting that the vacuum of initial density is allowed.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"192 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-024-00669-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we are concerned with the three-dimensional nonhomogeneous Bénard system with density-dependent viscosity in bounded domain. The global well-posedness of strong solution is established, provided that the initial total mass \(\|\rho _{0}\|_{L^{1}}\) is suitably small. In particular, the initial velocity and temperature can be arbitrarily large. Moreover, the exponential decay of strong solution is also obtained. It is worth noting that the vacuum of initial density is allowed.

具有密度相关粘度和真空的三维非均质贝纳德系统的全局好求和强解的指数衰减
本文关注的是有界域中具有密度粘性的三维非均质贝纳德系统。只要初始总质量 \(\|rho_{0}\|_{L^{1}}\)适当小,就能建立强解的全局拟合性。特别是,初始速度和温度可以任意大。此外,还得到了强解的指数衰减。值得注意的是,初始密度允许为真空。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Applicandae Mathematicae
Acta Applicandae Mathematicae 数学-应用数学
CiteScore
2.80
自引率
6.20%
发文量
77
审稿时长
16.2 months
期刊介绍: Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods. Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信