Nurdagül Anbar, Sadmir Kudin, Wilfried Meidl, Enes Pasalic, Alexandr Polujan
{"title":"Vectorial negabent concepts: similarities, differences, and generalizations","authors":"Nurdagül Anbar, Sadmir Kudin, Wilfried Meidl, Enes Pasalic, Alexandr Polujan","doi":"10.1007/s10623-024-01454-2","DOIUrl":null,"url":null,"abstract":"<p>In Pasalic et al. (IEEE Trans Inf Theory 69:2702–2712, 2023), and in Anbar and Meidl (Cryptogr Commun 10:235–249, 2018), two different vectorial negabent and vectorial bent-negabent concepts are introduced, which leads to seemingly contradictory results. One of the main motivations for this article is to clarify the differences and similarities between these two concepts. Moreover, the negabent concept is extended to generalized Boolean functions from <span>\\({\\mathbb {F}}_2^n\\)</span> to the cyclic group <span>\\({\\mathbb {Z}}_{2^k}\\)</span>. It is shown how to obtain nega-<span>\\({\\mathbb {Z}}_{2^k}\\)</span>-bent functions from <span>\\({\\mathbb {Z}}_{2^k}\\)</span>-bent functions, or equivalently, corresponding non-splitting relative difference sets from the splitting relative difference sets. This generalizes the shifting results for Boolean bent and negabent functions. We finally point to constructions of <span>\\({\\mathbb {Z}}_8\\)</span>-bent functions employing permutations with the <span>\\(({\\mathcal {A}}_m)\\)</span> property, and more generally we show that the inverse permutation gives rise to <span>\\({\\mathbb {Z}}_{2^k}\\)</span>-bent functions.</p>","PeriodicalId":11130,"journal":{"name":"Designs, Codes and Cryptography","volume":"35 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Designs, Codes and Cryptography","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01454-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In Pasalic et al. (IEEE Trans Inf Theory 69:2702–2712, 2023), and in Anbar and Meidl (Cryptogr Commun 10:235–249, 2018), two different vectorial negabent and vectorial bent-negabent concepts are introduced, which leads to seemingly contradictory results. One of the main motivations for this article is to clarify the differences and similarities between these two concepts. Moreover, the negabent concept is extended to generalized Boolean functions from \({\mathbb {F}}_2^n\) to the cyclic group \({\mathbb {Z}}_{2^k}\). It is shown how to obtain nega-\({\mathbb {Z}}_{2^k}\)-bent functions from \({\mathbb {Z}}_{2^k}\)-bent functions, or equivalently, corresponding non-splitting relative difference sets from the splitting relative difference sets. This generalizes the shifting results for Boolean bent and negabent functions. We finally point to constructions of \({\mathbb {Z}}_8\)-bent functions employing permutations with the \(({\mathcal {A}}_m)\) property, and more generally we show that the inverse permutation gives rise to \({\mathbb {Z}}_{2^k}\)-bent functions.
期刊介绍:
Designs, Codes and Cryptography is an archival peer-reviewed technical journal publishing original research papers in the designated areas. There is a great deal of activity in design theory, coding theory and cryptography, including a substantial amount of research which brings together more than one of the subjects. While many journals exist for each of the individual areas, few encourage the interaction of the disciplines.
The journal was founded to meet the needs of mathematicians, engineers and computer scientists working in these areas, whose interests extend beyond the bounds of any one of the individual disciplines. The journal provides a forum for high quality research in its three areas, with papers touching more than one of the areas especially welcome.
The journal also considers high quality submissions in the closely related areas of finite fields and finite geometries, which provide important tools for both the construction and the actual application of designs, codes and cryptographic systems. In particular, it includes (mostly theoretical) papers on computational aspects of finite fields. It also considers topics in sequence design, which frequently admit equivalent formulations in the journal’s main areas.
Designs, Codes and Cryptography is mathematically oriented, emphasizing the algebraic and geometric aspects of the areas it covers. The journal considers high quality papers of both a theoretical and a practical nature, provided they contain a substantial amount of mathematics.