Vectorial negabent concepts: similarities, differences, and generalizations

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nurdagül Anbar, Sadmir Kudin, Wilfried Meidl, Enes Pasalic, Alexandr Polujan
{"title":"Vectorial negabent concepts: similarities, differences, and generalizations","authors":"Nurdagül Anbar, Sadmir Kudin, Wilfried Meidl, Enes Pasalic, Alexandr Polujan","doi":"10.1007/s10623-024-01454-2","DOIUrl":null,"url":null,"abstract":"<p>In Pasalic et al. (IEEE Trans Inf Theory 69:2702–2712, 2023), and in Anbar and Meidl (Cryptogr Commun 10:235–249, 2018), two different vectorial negabent and vectorial bent-negabent concepts are introduced, which leads to seemingly contradictory results. One of the main motivations for this article is to clarify the differences and similarities between these two concepts. Moreover, the negabent concept is extended to generalized Boolean functions from <span>\\({\\mathbb {F}}_2^n\\)</span> to the cyclic group <span>\\({\\mathbb {Z}}_{2^k}\\)</span>. It is shown how to obtain nega-<span>\\({\\mathbb {Z}}_{2^k}\\)</span>-bent functions from <span>\\({\\mathbb {Z}}_{2^k}\\)</span>-bent functions, or equivalently, corresponding non-splitting relative difference sets from the splitting relative difference sets. This generalizes the shifting results for Boolean bent and negabent functions. We finally point to constructions of <span>\\({\\mathbb {Z}}_8\\)</span>-bent functions employing permutations with the <span>\\(({\\mathcal {A}}_m)\\)</span> property, and more generally we show that the inverse permutation gives rise to <span>\\({\\mathbb {Z}}_{2^k}\\)</span>-bent functions.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01454-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In Pasalic et al. (IEEE Trans Inf Theory 69:2702–2712, 2023), and in Anbar and Meidl (Cryptogr Commun 10:235–249, 2018), two different vectorial negabent and vectorial bent-negabent concepts are introduced, which leads to seemingly contradictory results. One of the main motivations for this article is to clarify the differences and similarities between these two concepts. Moreover, the negabent concept is extended to generalized Boolean functions from \({\mathbb {F}}_2^n\) to the cyclic group \({\mathbb {Z}}_{2^k}\). It is shown how to obtain nega-\({\mathbb {Z}}_{2^k}\)-bent functions from \({\mathbb {Z}}_{2^k}\)-bent functions, or equivalently, corresponding non-splitting relative difference sets from the splitting relative difference sets. This generalizes the shifting results for Boolean bent and negabent functions. We finally point to constructions of \({\mathbb {Z}}_8\)-bent functions employing permutations with the \(({\mathcal {A}}_m)\) property, and more generally we show that the inverse permutation gives rise to \({\mathbb {Z}}_{2^k}\)-bent functions.

矢量否定概念:相似性、差异性和概括性
在 Pasalic 等人(IEEE Trans Inf Theory 69:2702-2712, 2023)以及 Anbar 和 Meidl(Cryptogr Commun 10:235-249, 2018)的文章中,引入了两个不同的矢量否定和矢量弯曲否定概念,这导致了看似矛盾的结果。本文的主要动机之一是澄清这两个概念之间的异同。此外,本文将否定概念扩展到从\({\mathbb {F}}_2^n\) 到循环群\({\mathbb {Z}}_{2^k}\) 的广义布尔函数。这说明了如何从 \({\mathbb {Z}_{2^k}\)-bent 函数得到否定-({\mathbb {Z}_{2^k}\)-bent 函数,或者等价地,从分裂相对差集得到相应的非分裂相对差集。这推广了布尔弯曲函数和负弯曲函数的移位结果。最后,我们指出了使用具有 \(({\mathcal {A}}_m)\)性质的置换来构造 \({\mathbb {Z}_8\)- 本特函数,更一般地说,我们证明了逆置换会产生 \({\mathbb {Z}_{2^k}\)- 本特函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信