{"title":"The use of hemifusion to create asymmetric giant unilamellar vesicles: Insights on induced order domains.","authors":"Thais A Enoki","doi":"10.1016/bs.mie.2024.03.025","DOIUrl":null,"url":null,"abstract":"<p><p>The natural asymmetry of the lipid bilayer in biological membranes is, in part, a testament to the complexity of the structure and function of this barrier limiting and protecting cells (or organelles). These lipid bilayers consist of two lipid leaflets with different lipid compositions, resulting in unique interactions within each leaflet. These interactions, combined with interactions between the two leaflets, determine the overall behavior of the membrane. Model membranes provide the most suitable option for investigating the fundamental interactions of lipids. This report describes a comprehensive method to make asymmetric giant unilamellar vesicles (aGUVs) using the technique of hemifusion. In this method, calcium ions induce the hemifusion of giant unilamellar vesicles (GUVs) with a supported lipid bilayer (SLB), both having different lipid compositions. During hemifusion, a stalk, or a more commonly seen hemifusion diaphragm, connects the outer leaflets of GUVs and the SLB. The lateral diffusion of lipids naturally promotes the lipid exchange between the connected outer leaflets. After calcium chelation to prevent further fusion, a mechanical shear detaches aGUVs from the SLB. A fluorescence quench assay is employed to test the extent of bilayer asymmetry. A fluorescence quenching assay tests bilayer asymmetry and verifies dye and lipid migration to a GUV's outer leaflet.</p>","PeriodicalId":18662,"journal":{"name":"Methods in enzymology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in enzymology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.mie.2024.03.025","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
The natural asymmetry of the lipid bilayer in biological membranes is, in part, a testament to the complexity of the structure and function of this barrier limiting and protecting cells (or organelles). These lipid bilayers consist of two lipid leaflets with different lipid compositions, resulting in unique interactions within each leaflet. These interactions, combined with interactions between the two leaflets, determine the overall behavior of the membrane. Model membranes provide the most suitable option for investigating the fundamental interactions of lipids. This report describes a comprehensive method to make asymmetric giant unilamellar vesicles (aGUVs) using the technique of hemifusion. In this method, calcium ions induce the hemifusion of giant unilamellar vesicles (GUVs) with a supported lipid bilayer (SLB), both having different lipid compositions. During hemifusion, a stalk, or a more commonly seen hemifusion diaphragm, connects the outer leaflets of GUVs and the SLB. The lateral diffusion of lipids naturally promotes the lipid exchange between the connected outer leaflets. After calcium chelation to prevent further fusion, a mechanical shear detaches aGUVs from the SLB. A fluorescence quench assay is employed to test the extent of bilayer asymmetry. A fluorescence quenching assay tests bilayer asymmetry and verifies dye and lipid migration to a GUV's outer leaflet.
期刊介绍:
The critically acclaimed laboratory standard for almost 50 years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Each volume is eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with over 500 volumes the series contains much material still relevant today and is truly an essential publication for researchers in all fields of life sciences, including microbiology, biochemistry, cancer research and genetics-just to name a few. Five of the 2013 Nobel Laureates have edited or contributed to volumes of MIE.