Peroxiredoxin 3 Deficiency Exacerbates DSS-Induced Acute Colitis via Exosomal miR-1260b-Mediated Barrier Disruption and Proinflammatory Signaling.

IF 5.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Jing Jin, Moajury Jung, Seong-Keun Sonn, Seungwoon Seo, Joowon Suh, Hyae Yon Kweon, Shin Hye Moon, Huiju Jo, Na Hyeon Yoon, Goo Taeg Oh
{"title":"Peroxiredoxin 3 Deficiency Exacerbates DSS-Induced Acute Colitis via Exosomal miR-1260b-Mediated Barrier Disruption and Proinflammatory Signaling.","authors":"Jing Jin, Moajury Jung, Seong-Keun Sonn, Seungwoon Seo, Joowon Suh, Hyae Yon Kweon, Shin Hye Moon, Huiju Jo, Na Hyeon Yoon, Goo Taeg Oh","doi":"10.1089/ars.2023.0482","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Aims:</i></b> Peroxiredoxin3 (Prdx3) is an intracellular antioxidant enzyme that is specifically localized in mitochondria and protects against oxidative stress by removing mitochondrial reactive oxygen species (ROS). The intestinal epithelium provides a physical and biochemical barrier that segregates host tissues from commensal bacteria to maintain intestinal homeostasis. An imbalance between the cellular antioxidant defense system and oxidative stress has been implicated in the pathogenesis of inflammatory bowel disease (IBD). However, the role of Prdx3 in the intestinal epithelium under intestinal inflammation has not been elucidated. To investigate the potential role of Prdx3 in intestinal inflammation, we used intestinal epithelial cell (IEC)-specific Prdx3-knockout mice. <b><i>Results:</i></b> IEC-specific Prdx3-deficient mice showed more severe colitis phenotypes with greater degrees of body weight loss, colon shortening, barrier disruption, mitochondrial damage, and ROS generation in IECs. Furthermore, exosomal miR-1260b was dramatically increased in Prdx3-knockdown colonic epithelial cells. Mechanistically, Prdx3 deficiency promoted intestinal barrier disruption and inflammation <i>via</i> P38-mitogen-activated protein kinase/NFκB signaling. <b><i>Innovation:</i></b> This is the first study to report the protective role of Prdx3 in acute colitis using IEC-specific conditional knockout mice. <b><i>Conclusion:</i></b> Our study sheds light on the role of exosome-loaded miRNAs, particularly miR-1260b, in IBD. Targeting miR-1260b or modulating exosome-mediated intercellular communication may hold promise as potential therapeutic strategies for managing IBD and restoring intestinal barrier integrity.</p>","PeriodicalId":8011,"journal":{"name":"Antioxidants & redox signaling","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antioxidants & redox signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/ars.2023.0482","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: Peroxiredoxin3 (Prdx3) is an intracellular antioxidant enzyme that is specifically localized in mitochondria and protects against oxidative stress by removing mitochondrial reactive oxygen species (ROS). The intestinal epithelium provides a physical and biochemical barrier that segregates host tissues from commensal bacteria to maintain intestinal homeostasis. An imbalance between the cellular antioxidant defense system and oxidative stress has been implicated in the pathogenesis of inflammatory bowel disease (IBD). However, the role of Prdx3 in the intestinal epithelium under intestinal inflammation has not been elucidated. To investigate the potential role of Prdx3 in intestinal inflammation, we used intestinal epithelial cell (IEC)-specific Prdx3-knockout mice. Results: IEC-specific Prdx3-deficient mice showed more severe colitis phenotypes with greater degrees of body weight loss, colon shortening, barrier disruption, mitochondrial damage, and ROS generation in IECs. Furthermore, exosomal miR-1260b was dramatically increased in Prdx3-knockdown colonic epithelial cells. Mechanistically, Prdx3 deficiency promoted intestinal barrier disruption and inflammation via P38-mitogen-activated protein kinase/NFκB signaling. Innovation: This is the first study to report the protective role of Prdx3 in acute colitis using IEC-specific conditional knockout mice. Conclusion: Our study sheds light on the role of exosome-loaded miRNAs, particularly miR-1260b, in IBD. Targeting miR-1260b or modulating exosome-mediated intercellular communication may hold promise as potential therapeutic strategies for managing IBD and restoring intestinal barrier integrity.

过氧化还原酶 3 缺乏会通过外泌体 miR-1260b 介导的屏障破坏和促炎信号转导加剧 DSS 诱导的急性结肠炎。
目的:过氧化物歧化酶3(Prdx3)是一种细胞内抗氧化酶,特异性定位于线粒体,通过清除线粒体活性氧(ROS)来防止氧化应激。肠上皮提供了一道物理和生化屏障,将宿主组织与共生细菌隔离开来,以维持肠道平衡。细胞抗氧化防御系统与氧化应激之间的失衡与炎症性肠病(IBD)的发病机制有关。然而,Prdx3 在肠道炎症下的肠上皮细胞中的作用尚未阐明。为了研究Prdx3在肠道炎症中的潜在作用,我们使用了肠上皮细胞(IEC)特异性Prdx3基因敲除小鼠:结果:IEC特异性Prdx3缺陷小鼠表现出更严重的结肠炎表型,体重减轻、结肠缩短、屏障破坏、线粒体损伤和IEC中ROS生成的程度更高。此外,外泌体 miR-1260b 在 Prdx3 敲除的结肠上皮细胞中显著增加。从机制上讲,Prdx3 的缺乏通过 P38-MAPK/NFκB 信号转导促进了肠屏障的破坏和炎症。结论:我们的研究揭示了外泌体携带的miRNA,尤其是miR-1260b在IBD中的作用。靶向miR-1260b或调节外泌体介导的细胞间通讯可能有望成为控制IBD和恢复肠屏障完整性的潜在治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Antioxidants & redox signaling
Antioxidants & redox signaling 生物-内分泌学与代谢
CiteScore
14.10
自引率
1.50%
发文量
170
审稿时长
3-6 weeks
期刊介绍: Antioxidants & Redox Signaling (ARS) is the leading peer-reviewed journal dedicated to understanding the vital impact of oxygen and oxidation-reduction (redox) processes on human health and disease. The Journal explores key issues in genetic, pharmaceutical, and nutritional redox-based therapeutics. Cutting-edge research focuses on structural biology, stem cells, regenerative medicine, epigenetics, imaging, clinical outcomes, and preventive and therapeutic nutrition, among other areas. ARS has expanded to create two unique foci within one journal: ARS Discoveries and ARS Therapeutics. ARS Discoveries (24 issues) publishes the highest-caliber breakthroughs in basic and applied research. ARS Therapeutics (12 issues) is the first publication of its kind that will help enhance the entire field of redox biology by showcasing the potential of redox sciences to change health outcomes. ARS coverage includes: -ROS/RNS as messengers -Gaseous signal transducers -Hypoxia and tissue oxygenation -microRNA -Prokaryotic systems -Lessons from plant biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信