{"title":"Carbamic acid and its dimer: A computational study","authors":"Cristina Puzzarini, Silvia Alessandrini","doi":"10.1002/jcc.27442","DOIUrl":null,"url":null,"abstract":"<p>A recent work by Marks et al. on the formation of carbamic acid in NH<span></span><math>\n <mrow>\n <msub>\n <mo> </mo>\n <mrow>\n <mn>3</mn>\n </mrow>\n </msub>\n </mrow></math>-CO<span></span><math>\n <mrow>\n <msub>\n <mo> </mo>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow></math> interstellar ices pointed out its stability in the gas phase and the concomitant production of its dimer. Prompted by these results and the lack of information on these species, we have performed an accurate structural, energetic and spectroscopic investigation of carbamic acid and its dimer. For the former, the structural and spectroscopic characterization employed composite schemes based on coupled cluster (CC) calculations that account for the extrapolation to the complete basis set limit and core correlation effects. A first important outcome is the definitive confirmation of the nonplanarity of carbamic acid, then followed by an accurate estimate of its rotational and vibrational spectroscopy parameters. As far as the carbamic acid dimer is concerned, the investigation started from the identification of its most stable forms. For them, structure and vibrational properties have been evaluated using density functional theory, while a composite scheme rooted in CC theory has been employed for the energetic characterization. Our results allowed us to provide a better interpretation of the feature observed in the recent experiment mentioned above.</p>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"45 29","pages":"2501-2512"},"PeriodicalIF":3.4000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.27442","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A recent work by Marks et al. on the formation of carbamic acid in NH-CO interstellar ices pointed out its stability in the gas phase and the concomitant production of its dimer. Prompted by these results and the lack of information on these species, we have performed an accurate structural, energetic and spectroscopic investigation of carbamic acid and its dimer. For the former, the structural and spectroscopic characterization employed composite schemes based on coupled cluster (CC) calculations that account for the extrapolation to the complete basis set limit and core correlation effects. A first important outcome is the definitive confirmation of the nonplanarity of carbamic acid, then followed by an accurate estimate of its rotational and vibrational spectroscopy parameters. As far as the carbamic acid dimer is concerned, the investigation started from the identification of its most stable forms. For them, structure and vibrational properties have been evaluated using density functional theory, while a composite scheme rooted in CC theory has been employed for the energetic characterization. Our results allowed us to provide a better interpretation of the feature observed in the recent experiment mentioned above.
期刊介绍:
This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.