Oscillatory properties for Emden–Fowler type difference equations with oscillating coefficients

IF 1.4 Q2 MATHEMATICS, APPLIED
Yaşar Bolat , Murat Gevgeşoğlu , George E. Chatzarakis
{"title":"Oscillatory properties for Emden–Fowler type difference equations with oscillating coefficients","authors":"Yaşar Bolat ,&nbsp;Murat Gevgeşoğlu ,&nbsp;George E. Chatzarakis","doi":"10.1016/j.rinam.2024.100472","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we give new criteria on the oscillation of the fourth-order Emden–Fowler type delay difference equation with oscillating coefficients of the form <span><span><span><math><mrow><mi>Δ</mi><msub><mrow><mi>W</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>+</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>n</mi></mrow></msub><msubsup><mrow><mi>y</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>τ</mi></mrow><mrow><mi>β</mi></mrow></msubsup><mo>=</mo><mn>0</mn><mtext>,</mtext><mi>n</mi><mo>≥</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mtext>,</mtext></mrow></math></span></span></span>where <span><math><mrow><msub><mrow><mi>W</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>n</mi></mrow></msub><msup><mrow><mfenced><mrow><msup><mrow><mi>Δ</mi></mrow><mrow><mn>3</mn></mrow></msup><msub><mrow><mi>v</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></mfenced></mrow><mrow><mi>α</mi></mrow></msup></mrow></math></span> and <span><math><mrow><msub><mrow><mi>v</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><msub><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>+</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msub><msub><mrow><mi>y</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>σ</mi></mrow></msub></mrow></math></span>. For this we use the Riccati transformation method and the comparison method. Also we give some examples to illustrate our results.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"23 ","pages":"Article 100472"},"PeriodicalIF":1.4000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000426/pdfft?md5=a75c766551a918235e26d7441f4c4d69&pid=1-s2.0-S2590037424000426-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we give new criteria on the oscillation of the fourth-order Emden–Fowler type delay difference equation with oscillating coefficients of the form ΔWn+rnynτβ=0,nn0,where Wn=pnΔ3vnα and vn=yn+qnynσ. For this we use the Riccati transformation method and the comparison method. Also we give some examples to illustrate our results.

具有振荡系数的埃姆登-福勒型差分方程的振荡特性
本文给出了四阶埃姆登-福勒延迟差分方程振荡系数的新判据,其振荡系数形式为 ΔWn+rnyn-τβ=0,n≥n0,其中 Wn=pnΔ3vnα 和 vn=yn+qnyn-σ。为此,我们使用了里卡提变换法和比较法。此外,我们还举了一些例子来说明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信