Higher-order derivative of local times for space–time anisotropic Gaussian random fields

Pub Date : 2024-06-29 DOI:10.1016/j.spl.2024.110197
Zhenlong Chen, Peng Xu
{"title":"Higher-order derivative of local times for space–time anisotropic Gaussian random fields","authors":"Zhenlong Chen,&nbsp;Peng Xu","doi":"10.1016/j.spl.2024.110197","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mrow><mi>X</mi><mo>=</mo><mrow><mo>{</mo><mi>X</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>,</mo><mi>t</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>}</mo></mrow></mrow></math></span> be a centered space–time anisotropic Gaussian random field values in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. Under some general conditions, the existence and smoothness (in the sense of Meyer-Watanabe) of the higher-order derivative of the local times of <span><math><mrow><mi>X</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> are studied. Moreover, we show that the derivatives of the local time of <span><math><mrow><mi>X</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></mrow></math></span> is jointly continuous on <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>×</mo><msup><mrow><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></mrow><mrow><mi>N</mi></mrow></msup></mrow></math></span>. The existing results on local times of fractional Brownian motion and other Gaussian random fields are extended to higher-order derivative of local times of more general space–time anisotropic Gaussian random fields.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224001664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let X={X(t),tRN} be a centered space–time anisotropic Gaussian random field values in Rd. Under some general conditions, the existence and smoothness (in the sense of Meyer-Watanabe) of the higher-order derivative of the local times of X(t) are studied. Moreover, we show that the derivatives of the local time of X(t) is jointly continuous on Rd×[0,1]N. The existing results on local times of fractional Brownian motion and other Gaussian random fields are extended to higher-order derivative of local times of more general space–time anisotropic Gaussian random fields.

分享
查看原文
时空各向异性高斯随机场局部时间的高阶导数
设 X={X(t),t∈RN} 为 Rd 中的居中时空各向异性高斯随机场值。在一些一般条件下,我们研究了 X(t) 局部时间的高阶导数的存在性和平稳性(在迈耶-瓦塔纳贝的意义上)。此外,我们还证明了 X(t) 局部时间的导数在 Rd×[0,1]N 上是共同连续的。现有的关于分数布朗运动和其他高斯随机场的局部时间的结果被扩展到更一般的时空各向异性高斯随机场的局部时间的高阶导数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信