Exact partially conditional binomial analysis for multinomial data in 2 × 2 tables

Pub Date : 2024-06-28 DOI:10.1016/j.spl.2024.110195
Dennis D. Boos , Shannon Ari , Roger L. Berger
{"title":"Exact partially conditional binomial analysis for multinomial data in 2 × 2 tables","authors":"Dennis D. Boos ,&nbsp;Shannon Ari ,&nbsp;Roger L. Berger","doi":"10.1016/j.spl.2024.110195","DOIUrl":null,"url":null,"abstract":"<div><p>Starting with Barnard (1945, 1947), many papers have shown that exact unconditional tests outperform Fisher’s Exact Test in 2 × 2 tables with independent binomial data. Less has been published about unconditional tests with multinomial data. However, in many multinomial 2 × 2 analyses, a binomial-like comparison of proportions is of interest rather than inference in terms of odds ratios. Thus, this paper proposes using a partially conditional binomial analysis with data that are actually multinomially distributed. This partially conditional analysis, conditioning on the row totals and then using the unconditional binomial analysis, is more powerful than the fully conditional Fisher’s Exact Test, has good power comparable to the fully unconditional multinomial analysis, and provides exact confidence intervals for the difference of proportions. Also, the partially conditional binomial analysis requires considerably less computation than the fully unconditional analysis.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224001640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Starting with Barnard (1945, 1947), many papers have shown that exact unconditional tests outperform Fisher’s Exact Test in 2 × 2 tables with independent binomial data. Less has been published about unconditional tests with multinomial data. However, in many multinomial 2 × 2 analyses, a binomial-like comparison of proportions is of interest rather than inference in terms of odds ratios. Thus, this paper proposes using a partially conditional binomial analysis with data that are actually multinomially distributed. This partially conditional analysis, conditioning on the row totals and then using the unconditional binomial analysis, is more powerful than the fully conditional Fisher’s Exact Test, has good power comparable to the fully unconditional multinomial analysis, and provides exact confidence intervals for the difference of proportions. Also, the partially conditional binomial analysis requires considerably less computation than the fully unconditional analysis.

分享
查看原文
对 2 × 2 表中的多项式数据进行部分条件二项式精确分析
从 Barnard(1945 年,1947 年)开始,许多论文都表明,在独立二项式数据的 2 × 2 表中,精确无条件检验优于费雪精确检验。关于多项式数据的无条件检验的论文较少。然而,在许多多二项 2 × 2 分析中,人们感兴趣的是类似二项的比例比较,而不是几率比例的推断。因此,本文建议使用部分条件二项分析法,对实际为多二项分布的数据进行分析。这种部分条件分析是以行总数为条件,然后使用无条件二项分析,比完全条件费雪精确检验更强大,具有与完全无条件多项式分析相当的良好能力,并能为比例差异提供精确的置信区间。此外,与完全无条件分析相比,部分条件二叉分析所需的计算量要少得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信