From law of the iterated logarithm to Zolotarev distance for supercritical branching processes in random environment

Pub Date : 2024-06-27 DOI:10.1016/j.spl.2024.110194
Yinna Ye
{"title":"From law of the iterated logarithm to Zolotarev distance for supercritical branching processes in random environment","authors":"Yinna Ye","doi":"10.1016/j.spl.2024.110194","DOIUrl":null,"url":null,"abstract":"<div><p>Consider <span><math><msub><mrow><mrow><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mo>⩾</mo><mn>0</mn></mrow></msub></math></span> a supercritical branching process in an independent and identically distributed environment. Based on some recent development in martingale limit theory, we established law of the iterated logarithm, strong law of large numbers, invariance principle and optimal convergence rate in the central limit theorem under Zolotarev and Wasserstein distances of order <span><math><mrow><mi>p</mi><mo>∈</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>]</mo></mrow></mrow></math></span> for the process <span><math><msub><mrow><mrow><mo>(</mo><mo>log</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mo>⩾</mo><mn>0</mn></mrow></msub></math></span>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715224001639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Consider (Zn)n0 a supercritical branching process in an independent and identically distributed environment. Based on some recent development in martingale limit theory, we established law of the iterated logarithm, strong law of large numbers, invariance principle and optimal convergence rate in the central limit theorem under Zolotarev and Wasserstein distances of order p(0,2] for the process (logZn)n0.

分享
查看原文
从迭代对数定律到随机环境中超临界分支过程的佐洛塔列夫距离
考虑 (Zn)n⩾0 是独立且同分布环境中的超临界分支过程。基于马氏极限理论的最新发展,我们建立了过程 (logZn)n⩾0 在 Zolotarev 和 Wasserstein 距离 p∈(0,2] 阶下的迭代对数定律、强大数定律、不变性原理和中心极限定理中的最优收敛速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信