Gaseous pvTx properties for the binary mixtures of carbon dioxide (CO2) + trans-1,3,3,3-tetrafluoropropene (R1234ze(E)) and carbon dioxide (CO2) + 3,3,3-trifluoropropene (R1243zf)

IF 2.2 3区 工程技术 Q3 CHEMISTRY, PHYSICAL
Erqi Wang, Shuzhou Peng, Kang Qing, Zhen Yang, Yuanyuan Duan
{"title":"Gaseous pvTx properties for the binary mixtures of carbon dioxide (CO2) + trans-1,3,3,3-tetrafluoropropene (R1234ze(E)) and carbon dioxide (CO2) + 3,3,3-trifluoropropene (R1243zf)","authors":"Erqi Wang,&nbsp;Shuzhou Peng,&nbsp;Kang Qing,&nbsp;Zhen Yang,&nbsp;Yuanyuan Duan","doi":"10.1016/j.jct.2024.107345","DOIUrl":null,"url":null,"abstract":"<div><p>The gaseous <em>pvTx</em> data of the binary mixtures for carbon dioxide (CO<sub>2</sub>) + <em>trans</em>-1,3,3,3-tetrafluoropropene (R1234ze(E)) and CO<sub>2</sub> + 3,3,3-trifluoropropene (R1243zf) were experimentally measured at 5 isotherms from 333.15 K to 393.15 K. The experiment used a Burnett apparatus and the highest experimental pressure exceeded 7 MPa. The standard uncertainties of temperature, pressure and mole fraction are 10 mK, 0.2 ∼ 0.8 kPa and 0.0015, respectively. The relative uncertainty of the molar density is 0.05 %. Based on the experimental data of pure components and mixtures, three-term truncated virial equations of state (EoS) were established. The relative root mean square deviations (RMSD) of virial EoS in calculating density of CO<sub>2</sub> + R1234ze(E) and CO<sub>2</sub> + R1243zf mixtures are 0.15 % and 0.05 %, respectively. The virial EoS obtained in this work were compared with REFPROP 10.0 and the literature data, and the virial coefficients were calculated and compared between the experimental value and the calculated value from virial EoS.</p></div>","PeriodicalId":54867,"journal":{"name":"Journal of Chemical Thermodynamics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021961424000983","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The gaseous pvTx data of the binary mixtures for carbon dioxide (CO2) + trans-1,3,3,3-tetrafluoropropene (R1234ze(E)) and CO2 + 3,3,3-trifluoropropene (R1243zf) were experimentally measured at 5 isotherms from 333.15 K to 393.15 K. The experiment used a Burnett apparatus and the highest experimental pressure exceeded 7 MPa. The standard uncertainties of temperature, pressure and mole fraction are 10 mK, 0.2 ∼ 0.8 kPa and 0.0015, respectively. The relative uncertainty of the molar density is 0.05 %. Based on the experimental data of pure components and mixtures, three-term truncated virial equations of state (EoS) were established. The relative root mean square deviations (RMSD) of virial EoS in calculating density of CO2 + R1234ze(E) and CO2 + R1243zf mixtures are 0.15 % and 0.05 %, respectively. The virial EoS obtained in this work were compared with REFPROP 10.0 and the literature data, and the virial coefficients were calculated and compared between the experimental value and the calculated value from virial EoS.

Abstract Image

二氧化碳(CO2)+反式-1,3,3,3-四氟丙烯(R1234ze(E))和二氧化碳(CO2)+3,3,3-三氟丙烯(R1243zf)二元混合物的气态 pvTx 特性
在 333.15 K 至 393.15 K 的 5 个等温线上实验测量了二氧化碳 (CO2) + 反式-1,3,3,3-四氟丙烯 (R1234ze(E)) 和二氧化碳 + 3,3,3-三氟丙烯 (R1243zf) 二元混合物的气态 pvTx 数据。温度、压力和摩尔分数的标准不确定度分别为 10 mK、0.2 ∼ 0.8 kPa 和 0.0015。摩尔密度的相对不确定性为 0.05%。根据纯组分和混合物的实验数据,建立了三项截断病毒状态方程(EoS)。在计算 CO2 + R1234ze(E) 和 CO2 + R1243zf 混合物密度时,virial EoS 的相对均方根偏差(RMSD)分别为 0.15 % 和 0.05 %。将本研究获得的virial EoS与REFPROP 10.0和文献数据进行了比较,并计算了virial系数,并将实验值与virial EoS计算值进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Thermodynamics
Journal of Chemical Thermodynamics 工程技术-热力学
CiteScore
5.60
自引率
15.40%
发文量
199
审稿时长
79 days
期刊介绍: The Journal of Chemical Thermodynamics exists primarily for dissemination of significant new knowledge in experimental equilibrium thermodynamics and transport properties of chemical systems. The defining attributes of The Journal are the quality and relevance of the papers published. The Journal publishes work relating to gases, liquids, solids, polymers, mixtures, solutions and interfaces. Studies on systems with variability, such as biological or bio-based materials, gas hydrates, among others, will also be considered provided these are well characterized and reproducible where possible. Experimental methods should be described in sufficient detail to allow critical assessment of the accuracy claimed. Authors are encouraged to provide physical or chemical interpretations of the results. Articles can contain modelling sections providing representations of data or molecular insights into the properties or transformations studied. Theoretical papers on chemical thermodynamics using molecular theory or modelling are also considered. The Journal welcomes review articles in the field of chemical thermodynamics but prospective authors should first consult one of the Editors concerning the suitability of the proposed review. Contributions of a routine nature or reporting on uncharacterised materials are not accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信