Power and Mittag–Leffler laws for examining the dynamics of fractional unemployment model: A comparative analysis

Q1 Mathematics
Binandam S. Lassong , Munkaila Dasumani , Joseph K. Mung’atu , Stephen E. Moore
{"title":"Power and Mittag–Leffler laws for examining the dynamics of fractional unemployment model: A comparative analysis","authors":"Binandam S. Lassong ,&nbsp;Munkaila Dasumani ,&nbsp;Joseph K. Mung’atu ,&nbsp;Stephen E. Moore","doi":"10.1016/j.csfx.2024.100117","DOIUrl":null,"url":null,"abstract":"<div><p>Unemployment is a major problem worldwide and is one of the key factors determining a nation’s economic status. The issue of unemployment is made more difficult globally by the ongoing rise in labor force participation and the scarcity of job positions. In this work, we study the unemployment model with two distinct fractional-order derivatives: the Caputo operator and the Atangana–Baleanu operator in the sense of Caputo (ABC). These derivatives under consideration are the operators widely utilized in modeling real-world phenomena in fractional dynamics. The existence and uniqueness of the solutions to the fractional model under consideration are ascertained using the fixed-point theory. The Hyers-Ulam analysis is employed to determine stability. For the numerical results, we present an Adams-type predictor–corrector (PC) technique for Caputo derivative and an extended Adams Bashforth (ABM) method for Atangana–Baleanu derivative. The outcomes achieved with the Atangana–Baleanu–Caputo and Caputo derivatives are identical to those of the regular case when fractional order <span><math><mrow><mi>ν</mi><mo>=</mo><mn>1</mn><mo>.</mo><mn>00</mn></mrow></math></span>. However, the results obtained change slightly as fractional order assumes values smaller than one, and this variation becomes most noticeable when the fractional order <span><math><mrow><mi>ν</mi><mo>&lt;</mo><mn>0</mn><mo>.</mo><mn>72</mn></mrow></math></span>. This is because of the fractional derivative definitions’ underlying kernel. It is shown that the Mittag–Leffler kernel derivative provides better results for smaller fractional orders.</p></div>","PeriodicalId":37147,"journal":{"name":"Chaos, Solitons and Fractals: X","volume":"13 ","pages":"Article 100117"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590054424000149/pdfft?md5=f9ae21d7cb20f78864491c0114c22404&pid=1-s2.0-S2590054424000149-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos, Solitons and Fractals: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590054424000149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Unemployment is a major problem worldwide and is one of the key factors determining a nation’s economic status. The issue of unemployment is made more difficult globally by the ongoing rise in labor force participation and the scarcity of job positions. In this work, we study the unemployment model with two distinct fractional-order derivatives: the Caputo operator and the Atangana–Baleanu operator in the sense of Caputo (ABC). These derivatives under consideration are the operators widely utilized in modeling real-world phenomena in fractional dynamics. The existence and uniqueness of the solutions to the fractional model under consideration are ascertained using the fixed-point theory. The Hyers-Ulam analysis is employed to determine stability. For the numerical results, we present an Adams-type predictor–corrector (PC) technique for Caputo derivative and an extended Adams Bashforth (ABM) method for Atangana–Baleanu derivative. The outcomes achieved with the Atangana–Baleanu–Caputo and Caputo derivatives are identical to those of the regular case when fractional order ν=1.00. However, the results obtained change slightly as fractional order assumes values smaller than one, and this variation becomes most noticeable when the fractional order ν<0.72. This is because of the fractional derivative definitions’ underlying kernel. It is shown that the Mittag–Leffler kernel derivative provides better results for smaller fractional orders.

用于研究分数失业模型动态的 Power 和 Mittag-Leffler 法:比较分析
失业是世界范围内的一个主要问题,也是决定一个国家经济状况的关键因素之一。在全球范围内,由于劳动力参与率的持续上升和工作岗位的稀缺,失业问题变得更加棘手。在这项工作中,我们研究了具有两种不同分数阶导数的失业模型:卡普托算子和卡普托意义上的阿坦加纳-巴莱亚努算子(ABC)。我们所考虑的这些导数是在分数动力学中广泛用于模拟现实世界现象的算子。利用定点理论确定了所考虑的分数模型解的存在性和唯一性。海尔-乌兰分析用于确定稳定性。在数值结果方面,我们针对 Caputo 导数提出了亚当斯型预测器-校正器(PC)技术,针对 Atangana-Baleanu 导数提出了扩展亚当斯-巴什福斯(ABM)方法。当分数阶数 ν=1.00 时,阿坦加纳-巴莱阿努-卡普托导数和卡普托导数的结果与常规情况下的结果相同。然而,当分数阶的值小于 1 时,得到的结果略有变化,当分数阶 ν<0.72 时,这种变化最为明显。这是因为分数导数定义的基本核。结果表明,Mittag-Leffler 核导数为较小的分数阶提供了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos, Solitons and Fractals: X
Chaos, Solitons and Fractals: X Mathematics-Mathematics (all)
CiteScore
5.00
自引率
0.00%
发文量
15
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信