Accuracy scoring of elicited imitation: A tutorial of automating speech data with commercial NLP support

Kathy Minhye Kim , Xiaobin Chen , Xiaoyi Liu
{"title":"Accuracy scoring of elicited imitation: A tutorial of automating speech data with commercial NLP support","authors":"Kathy Minhye Kim ,&nbsp;Xiaobin Chen ,&nbsp;Xiaoyi Liu","doi":"10.1016/j.rmal.2024.100127","DOIUrl":null,"url":null,"abstract":"<div><p>This tutorial demonstrates how to automate the scoring of two oft-used English morphosyntactic forms, <em>be</em>-passive and third person singular -<em>s,</em> using commercial Natural Language Processing services. It focuses specifically on the context of elicited imitation (EI) tests drawing on previously web-collected EI data (Kim &amp; Godfroid, 2023; Kim et al., 2024). We provide step-by-step instructions and example codes covering three key stages of data processing: (1) speech-to-text transcription, (2) identification of morphosyntactic structures, and (3) the scoring algorithm. This method can be applied to various form-based EI scoring schemes or other form-based automatic scoring tasks, enhancing the broader adoption and practical application of automated scoring in both research and educational settings.</p></div>","PeriodicalId":101075,"journal":{"name":"Research Methods in Applied Linguistics","volume":"3 3","pages":"Article 100127"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772766124000338/pdfft?md5=98ebdf4d256d09f01dd26f134acaa893&pid=1-s2.0-S2772766124000338-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Methods in Applied Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772766124000338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This tutorial demonstrates how to automate the scoring of two oft-used English morphosyntactic forms, be-passive and third person singular -s, using commercial Natural Language Processing services. It focuses specifically on the context of elicited imitation (EI) tests drawing on previously web-collected EI data (Kim & Godfroid, 2023; Kim et al., 2024). We provide step-by-step instructions and example codes covering three key stages of data processing: (1) speech-to-text transcription, (2) identification of morphosyntactic structures, and (3) the scoring algorithm. This method can be applied to various form-based EI scoring schemes or other form-based automatic scoring tasks, enhancing the broader adoption and practical application of automated scoring in both research and educational settings.

诱导模仿的准确性评分:利用商业 NLP 支持实现语音数据自动化教程
本教程演示了如何利用商业自然语言处理服务,对两种常用英语形态句法形式(be-passive 和第三人称单数 -s)进行自动评分。该教程特别关注诱导模仿(EI)测试的语境,并借鉴了之前网络收集的 EI 数据(Kim & Godfroid, 2023; Kim 等人, 2024)。我们提供了分步说明和示例代码,涵盖数据处理的三个关键阶段:(1) 语音到文本的转录,(2) 形态句法结构的识别,以及 (3) 评分算法。该方法可应用于各种基于形式的 EI 评分方案或其他基于形式的自动评分任务,从而提高自动评分在研究和教育环境中的广泛采用和实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信