Brian Sal, Diego García-Saiz, Alfonso de la Vega, Pablo Sánchez
{"title":"Domain-specific languages for the automated generation of datasets for industry 4.0 applications","authors":"Brian Sal, Diego García-Saiz, Alfonso de la Vega, Pablo Sánchez","doi":"10.1016/j.jii.2024.100657","DOIUrl":null,"url":null,"abstract":"<div><p>Data collected in Industry 4.0 applications must be converted into tabular datasets before they can be processed by analysis algorithms, as in any data analysis system. To perform this transformation, data scientists have to write complex and long scripts, which can be a cumbersome process. To overcome this limitation, a language called Lavoisier was recently created to facilitate the creation of datasets. This language provides high-level primitives to select data from an object-oriented data model describing data available in a context. However, industrial engineers might not be used to deal with this kind of model. So, this work introduces a new set of languages that adapt Lavoisier to work with fishbone diagrams, which might be more suitable in industrial settings. These new languages keep the benefits of Lavoisier, reducing dataset creation complexity by 40% and up to 80%, and outperforming Lavoisier in some cases.</p></div>","PeriodicalId":55975,"journal":{"name":"Journal of Industrial Information Integration","volume":"41 ","pages":"Article 100657"},"PeriodicalIF":10.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2452414X24001018/pdfft?md5=d889d7ec504c180c01cd190b069820dc&pid=1-s2.0-S2452414X24001018-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Information Integration","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452414X24001018","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Data collected in Industry 4.0 applications must be converted into tabular datasets before they can be processed by analysis algorithms, as in any data analysis system. To perform this transformation, data scientists have to write complex and long scripts, which can be a cumbersome process. To overcome this limitation, a language called Lavoisier was recently created to facilitate the creation of datasets. This language provides high-level primitives to select data from an object-oriented data model describing data available in a context. However, industrial engineers might not be used to deal with this kind of model. So, this work introduces a new set of languages that adapt Lavoisier to work with fishbone diagrams, which might be more suitable in industrial settings. These new languages keep the benefits of Lavoisier, reducing dataset creation complexity by 40% and up to 80%, and outperforming Lavoisier in some cases.
期刊介绍:
The Journal of Industrial Information Integration focuses on the industry's transition towards industrial integration and informatization, covering not only hardware and software but also information integration. It serves as a platform for promoting advances in industrial information integration, addressing challenges, issues, and solutions in an interdisciplinary forum for researchers, practitioners, and policy makers.
The Journal of Industrial Information Integration welcomes papers on foundational, technical, and practical aspects of industrial information integration, emphasizing the complex and cross-disciplinary topics that arise in industrial integration. Techniques from mathematical science, computer science, computer engineering, electrical and electronic engineering, manufacturing engineering, and engineering management are crucial in this context.