Central limit theorem under the Dedecker–Rio condition in some Banach spaces

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Aurélie Bigot
{"title":"Central limit theorem under the Dedecker–Rio condition in some Banach spaces","authors":"Aurélie Bigot","doi":"10.1016/j.spa.2024.104419","DOIUrl":null,"url":null,"abstract":"<div><p>We extend the central limit theorem under the Dedecker–Rio condition to adapted stationary and ergodic sequences of random variables taking values in a class of smooth Banach spaces. This result applies to the case of random variables taking values in <span><math><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mrow><mo>(</mo><mi>μ</mi><mo>)</mo></mrow></mrow></math></span>, with <span><math><mrow><mn>2</mn><mo>⩽</mo><mi>p</mi><mo>&lt;</mo><mi>∞</mi></mrow></math></span> and <span><math><mi>μ</mi></math></span> a <span><math><mi>σ</mi></math></span>-finite real measure. As an application we give a sufficient condition for empirical processes indexed by Sobolev balls to satisfy the central limit theorem, and discuss about the optimality of these conditions.</p></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"176 ","pages":"Article 104419"},"PeriodicalIF":1.1000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030441492400125X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We extend the central limit theorem under the Dedecker–Rio condition to adapted stationary and ergodic sequences of random variables taking values in a class of smooth Banach spaces. This result applies to the case of random variables taking values in Lp(μ), with 2p< and μ a σ-finite real measure. As an application we give a sufficient condition for empirical processes indexed by Sobolev balls to satisfy the central limit theorem, and discuss about the optimality of these conditions.

某些巴拿赫空间中戴德克-里奥条件下的中心极限定理
我们将戴德克-里奥条件下的中心极限定理扩展到一类光滑巴拿赫空间中取值的随机变量的适应静止和遍历序列。这一结果适用于在 Lp(μ) 中取值的随机变量的情况,其中 2⩽p<∞ 和 μ 是一个 σ 有限实量。作为应用,我们给出了以 Sobolev 球为索引的经验过程满足中心极限定理的充分条件,并讨论了这些条件的最优性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信