{"title":"The role of regional water vapor dynamics in creating precipitation extremes","authors":"Seokhyeon Kim , Conrad Wasko , Ashish Sharma , Rory Nathan","doi":"10.1016/j.hydroa.2024.100181","DOIUrl":null,"url":null,"abstract":"<div><p>While sub-daily precipitation extremes cause flash flooding and pose risk to life, longer precipitation extremes threaten infrastructure such as water supply dams. Frequent storm or floods events replenish water supplies, ensuring the health of our ecosystems, while rarer larger storms or floods cause damage to property and life. These differing impacts depend on both storm rarity and duration and are largely dependent on coincident atmospheric water vapour. Using a novel metric that quantifies the extent of concurrency that exists between precipitation and total water vapour extremes, large regional variations are identified across the globe. Tropical regions such as Northeast Africa and South/East Asia consistently exhibit greater concurrency across all precipitation durations. In contrast, areas of the extra-tropics, such as the Mediterranean and Northwest Americas, show a rapid decline in concurrency with increasing duration. However, for rare events of long duration, non-tropical regions maintain high concurrency. With the link between climate change and increasing total water vapour well established, these results suggest that flood events will increase globally, with increases most apparent for longer and rarer events. This work underscores the need for tailored regional strategies in managing extreme precipitation and flood events in the future.</p></div>","PeriodicalId":36948,"journal":{"name":"Journal of Hydrology X","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589915524000117/pdfft?md5=29405f9ed81d96b1fc00aaa0fd37cba0&pid=1-s2.0-S2589915524000117-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589915524000117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
While sub-daily precipitation extremes cause flash flooding and pose risk to life, longer precipitation extremes threaten infrastructure such as water supply dams. Frequent storm or floods events replenish water supplies, ensuring the health of our ecosystems, while rarer larger storms or floods cause damage to property and life. These differing impacts depend on both storm rarity and duration and are largely dependent on coincident atmospheric water vapour. Using a novel metric that quantifies the extent of concurrency that exists between precipitation and total water vapour extremes, large regional variations are identified across the globe. Tropical regions such as Northeast Africa and South/East Asia consistently exhibit greater concurrency across all precipitation durations. In contrast, areas of the extra-tropics, such as the Mediterranean and Northwest Americas, show a rapid decline in concurrency with increasing duration. However, for rare events of long duration, non-tropical regions maintain high concurrency. With the link between climate change and increasing total water vapour well established, these results suggest that flood events will increase globally, with increases most apparent for longer and rarer events. This work underscores the need for tailored regional strategies in managing extreme precipitation and flood events in the future.