Bi-planar magnetic stabilisation coils for an inertial sensor based on atom interferometry

Q2 Physics and Astronomy
A. Davis , P.J. Hobson , T.X. Smith , C. Morley , H.G. Sewell , J. Cotter , T.M. Fromhold
{"title":"Bi-planar magnetic stabilisation coils for an inertial sensor based on atom interferometry","authors":"A. Davis ,&nbsp;P.J. Hobson ,&nbsp;T.X. Smith ,&nbsp;C. Morley ,&nbsp;H.G. Sewell ,&nbsp;J. Cotter ,&nbsp;T.M. Fromhold","doi":"10.1016/j.physo.2024.100227","DOIUrl":null,"url":null,"abstract":"<div><p>Inertial sensors that measure the acceleration of ultracold atoms promise unrivalled accuracy compared to classical equivalents. However, atomic systems are sensitive to various perturbations, including magnetic fields, which can introduce measurement inaccuracies. To address this challenge, we have designed, manufactured, and validated a magnetic field stabilisation system for a quantum sensor based on atom interferometry. We solve for the magnetic field generated by surface currents in-between a pair of bi-rectangular coils and approximate the surface current using discrete wires. The wires are wound by-hand onto machined panels which are retrofitted onto the existing mounting structure of the sensor without interfering with any experimental components. Along the central <span><math><mrow><mn>60</mn><mspace></mspace><mi>mm</mi></mrow></math></span> of the <span><math><mi>y</mi></math></span>-axis, which aligns with the trajectory of the atoms during interferometry, the coils are measured to generate an independent uniform axial magnetic field with a strength of <span><math><mrow><msub><mrow><mi>B</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>=</mo><mfenced><mrow><mn>22</mn><mo>.</mo><mn>81</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>01</mn></mrow></mfenced></mrow></math></span> <span><math><mi>μ</mi></math></span>T/A [<span><math><mrow><mi>mean</mi><mo>±</mo><mn>2</mn><mi>σ</mi><mspace></mspace><mi>std. error</mi></mrow></math></span>] and an independent linear axial field gradient of strength <span><math><mrow><mi>d</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>z</mi></mrow></msub><mo>/</mo><mi>d</mi><mi>y</mi><mo>=</mo><mfenced><mrow><mn>10</mn><mo>.</mo><mn>6</mn><mo>±</mo><mn>0</mn><mo>.</mo><mn>1</mn></mrow></mfenced></mrow></math></span> <span><math><mi>μ</mi></math></span>T/Am. The uniform <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>z</mi></mrow></msub></math></span> field is measured to deviate by a maximum value of 1.3% in the same region, which is a factor of three times more uniform than the previously-used on-sensor rectangular <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>z</mi></mrow></msub></math></span> compensation set.</p></div>","PeriodicalId":36067,"journal":{"name":"Physics Open","volume":"20 ","pages":"Article 100227"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666032624000255/pdfft?md5=61c5354aa3e42b7600f92881ea484bc3&pid=1-s2.0-S2666032624000255-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666032624000255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Inertial sensors that measure the acceleration of ultracold atoms promise unrivalled accuracy compared to classical equivalents. However, atomic systems are sensitive to various perturbations, including magnetic fields, which can introduce measurement inaccuracies. To address this challenge, we have designed, manufactured, and validated a magnetic field stabilisation system for a quantum sensor based on atom interferometry. We solve for the magnetic field generated by surface currents in-between a pair of bi-rectangular coils and approximate the surface current using discrete wires. The wires are wound by-hand onto machined panels which are retrofitted onto the existing mounting structure of the sensor without interfering with any experimental components. Along the central 60mm of the y-axis, which aligns with the trajectory of the atoms during interferometry, the coils are measured to generate an independent uniform axial magnetic field with a strength of Bz=22.81±0.01 μT/A [mean±2σstd. error] and an independent linear axial field gradient of strength dBz/dy=10.6±0.1 μT/Am. The uniform Bz field is measured to deviate by a maximum value of 1.3% in the same region, which is a factor of three times more uniform than the previously-used on-sensor rectangular Bz compensation set.

基于原子干涉测量法的惯性传感器双平面磁稳定线圈
测量超冷原子加速度的惯性传感器与经典传感器相比具有无与伦比的精确度。然而,原子系统对包括磁场在内的各种扰动都很敏感,这会带来测量误差。为了应对这一挑战,我们为基于原子干涉测量的量子传感器设计、制造并验证了磁场稳定系统。我们对一对双角线圈之间的表面电流产生的磁场进行了求解,并使用离散导线对表面电流进行了近似。这些导线是手工缠绕到加工好的面板上的,这些面板被加装到传感器现有的安装结构上,不会影响任何实验组件。沿 Y 轴中心 60 毫米(与干涉测量时的原子轨迹一致),测量线圈产生的独立均匀轴向磁场强度为 Bz=22.81±0.01 μT/A [平均±2σstd.误差],独立线性轴向磁场强度梯度为 dBz/dy=10.6±0.1μT/Am。在同一区域测得的均匀 Bz 场的最大偏差值为 1.3%,比之前使用的传感器上矩形 Bz 补偿集的均匀度高出三倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics Open
Physics Open Physics and Astronomy-Physics and Astronomy (all)
CiteScore
3.20
自引率
0.00%
发文量
19
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信