Jungyo Suh, Garam Lee, Jung Woo Kim, Junbum Shin, Yi-Jun Kim, Sang-Wook Lee, Sulgi Kim
{"title":"Privacy-Preserving Prediction of Postoperative Mortality in Multi-Institutional Data: Development and Usability Study.","authors":"Jungyo Suh, Garam Lee, Jung Woo Kim, Junbum Shin, Yi-Jun Kim, Sang-Wook Lee, Sulgi Kim","doi":"10.2196/56893","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To circumvent regulatory barriers that limit medical data exchange due to personal information security concerns, we use homomorphic encryption (HE) technology, enabling computation on encrypted data and enhancing privacy.</p><p><strong>Objective: </strong>This study explores whether using HE to integrate encrypted multi-institutional data enhances predictive power in research, focusing on the integration feasibility across institutions and determining the optimal size of hospital data sets for improved prediction models.</p><p><strong>Methods: </strong>We used data from 341,007 individuals aged 18 years and older who underwent noncardiac surgeries across 3 medical institutions. The study focused on predicting in-hospital mortality within 30 days postoperatively, using secure logistic regression based on HE as the prediction model. We compared the predictive performance of this model using plaintext data from a single institution against a model using encrypted data from multiple institutions.</p><p><strong>Results: </strong>The predictive model using encrypted data from all 3 institutions exhibited the best performance based on area under the receiver operating characteristic curve (0.941); the model combining Asan Medical Center (AMC) and Seoul National University Hospital (SNUH) data exhibited the best predictive performance based on area under the precision-recall curve (0.132). Both Ewha Womans University Medical Center and SNUH demonstrated improvement in predictive power for their own institutions upon their respective data's addition to the AMC data.</p><p><strong>Conclusions: </strong>Prediction models using multi-institutional data sets processed with HE outperformed those using single-institution data sets, especially when our model adaptation approach was applied, which was further validated on a smaller host hospital with a limited data set.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"12 ","pages":"e56893"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11259763/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/56893","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: To circumvent regulatory barriers that limit medical data exchange due to personal information security concerns, we use homomorphic encryption (HE) technology, enabling computation on encrypted data and enhancing privacy.
Objective: This study explores whether using HE to integrate encrypted multi-institutional data enhances predictive power in research, focusing on the integration feasibility across institutions and determining the optimal size of hospital data sets for improved prediction models.
Methods: We used data from 341,007 individuals aged 18 years and older who underwent noncardiac surgeries across 3 medical institutions. The study focused on predicting in-hospital mortality within 30 days postoperatively, using secure logistic regression based on HE as the prediction model. We compared the predictive performance of this model using plaintext data from a single institution against a model using encrypted data from multiple institutions.
Results: The predictive model using encrypted data from all 3 institutions exhibited the best performance based on area under the receiver operating characteristic curve (0.941); the model combining Asan Medical Center (AMC) and Seoul National University Hospital (SNUH) data exhibited the best predictive performance based on area under the precision-recall curve (0.132). Both Ewha Womans University Medical Center and SNUH demonstrated improvement in predictive power for their own institutions upon their respective data's addition to the AMC data.
Conclusions: Prediction models using multi-institutional data sets processed with HE outperformed those using single-institution data sets, especially when our model adaptation approach was applied, which was further validated on a smaller host hospital with a limited data set.
期刊介绍:
JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals.
Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.