ConKeD: multiview contrastive descriptor learning for keypoint-based retinal image registration.

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
David Rivas-Villar, Álvaro S Hervella, José Rouco, Jorge Novo
{"title":"ConKeD: multiview contrastive descriptor learning for keypoint-based retinal image registration.","authors":"David Rivas-Villar, Álvaro S Hervella, José Rouco, Jorge Novo","doi":"10.1007/s11517-024-03160-6","DOIUrl":null,"url":null,"abstract":"<p><p>Retinal image registration is of utmost importance due to its wide applications in medical practice. In this context, we propose ConKeD, a novel deep learning approach to learn descriptors for retinal image registration. In contrast to current registration methods, our approach employs a novel multi-positive multi-negative contrastive learning strategy that enables the utilization of additional information from the available training samples. This makes it possible to learn high-quality descriptors from limited training data. To train and evaluate ConKeD, we combine these descriptors with domain-specific keypoints, particularly blood vessel bifurcations and crossovers, that are detected using a deep neural network. Our experimental results demonstrate the benefits of the novel multi-positive multi-negative strategy, as it outperforms the widely used triplet loss technique (single-positive and single-negative) as well as the single-positive multi-negative alternative. Additionally, the combination of ConKeD with the domain-specific keypoints produces comparable results to the state-of-the-art methods for retinal image registration, while offering important advantages such as avoiding pre-processing, utilizing fewer training samples, and requiring fewer detected keypoints, among others. Therefore, ConKeD shows a promising potential towards facilitating the development and application of deep learning-based methods for retinal image registration.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":"3721-3736"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568994/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03160-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Retinal image registration is of utmost importance due to its wide applications in medical practice. In this context, we propose ConKeD, a novel deep learning approach to learn descriptors for retinal image registration. In contrast to current registration methods, our approach employs a novel multi-positive multi-negative contrastive learning strategy that enables the utilization of additional information from the available training samples. This makes it possible to learn high-quality descriptors from limited training data. To train and evaluate ConKeD, we combine these descriptors with domain-specific keypoints, particularly blood vessel bifurcations and crossovers, that are detected using a deep neural network. Our experimental results demonstrate the benefits of the novel multi-positive multi-negative strategy, as it outperforms the widely used triplet loss technique (single-positive and single-negative) as well as the single-positive multi-negative alternative. Additionally, the combination of ConKeD with the domain-specific keypoints produces comparable results to the state-of-the-art methods for retinal image registration, while offering important advantages such as avoiding pre-processing, utilizing fewer training samples, and requiring fewer detected keypoints, among others. Therefore, ConKeD shows a promising potential towards facilitating the development and application of deep learning-based methods for retinal image registration.

Abstract Image

ConKeD:基于关键点的视网膜图像配准的多视角对比描述学习。
由于视网膜图像配准在医疗实践中的广泛应用,其重要性不言而喻。在此背景下,我们提出了一种新颖的深度学习方法 ConKeD,用于学习视网膜图像配准的描述符。与当前的配准方法相比,我们的方法采用了一种新颖的多正多负对比学习策略,能够利用来自可用训练样本的额外信息。这使得从有限的训练数据中学习高质量的描述符成为可能。为了训练和评估 ConKeD,我们将这些描述符与特定领域的关键点相结合,特别是使用深度神经网络检测的血管分叉和交叉点。我们的实验结果证明了新颖的多正多负策略的优势,因为它优于广泛使用的三重损失技术(单正和单负)以及单正多负替代方法。此外,ConKeD 与特定领域关键点的结合所产生的结果与最先进的视网膜图像配准方法不相上下,同时还具有避免预处理、利用更少的训练样本和需要更少的检测关键点等重要优势。因此,ConKeD 在促进基于深度学习的视网膜图像配准方法的开发和应用方面显示出了巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信