Distinct regions of its first intracellular loop contribute to the proper localization, transport activity and substrate-affinity adjustment of the main yeast K+ importer Trk1

IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Klara Papouskova, Olga Zimmermannova, Hana Sychrova
{"title":"Distinct regions of its first intracellular loop contribute to the proper localization, transport activity and substrate-affinity adjustment of the main yeast K+ importer Trk1","authors":"Klara Papouskova,&nbsp;Olga Zimmermannova,&nbsp;Hana Sychrova","doi":"10.1016/j.bbamem.2024.184369","DOIUrl":null,"url":null,"abstract":"<div><p>Trk1 is the main K<sup>+</sup> importer of <em>Saccharomyces cerevisiae</em>. Its proper functioning enables yeast cells to grow in environments with micromolar amounts of K<sup>+</sup>. Although the structure of Trk1 has not been experimentally determined, the transporter is predicted to be composed of four MPM (transmembrane segment – pore loop – transmembrane segment) motifs which are connected by intracellular loops. Of those, in particular the first loop (IL1) is unique in its length; it forms more than half of the entire protein. The deletion of the majority of IL1 does not abolish the transport activity of Trk1. However IL1 is thought to be involved in the modulation of the transporter's functioning. In this work, we prepared a series of internally shortened versions of Trk1 that lacked various parts of IL1, and we studied their properties in <em>S. cerevisiae</em> cells without chromosomal copies of <em>TRK</em> genes. Using this approach, we were able to determine that both N- and C-border regions of IL1 are necessary for the proper localization of Trk1. Moreover, the N-border part of IL1 is also important for the functioning of Trk1, as its absence resulted in a decrease in the transporter's substrate affinity. In addition, in the internal part of IL1, we newly identified a stretch of amino-acid residues that are indispensable for retaining the transporter's maximum velocity, and another region whose deletion affected the ability of Trk1 to adjust its affinity in response to external levels of K<sup>+</sup>.</p></div>","PeriodicalId":8831,"journal":{"name":"Biochimica et biophysica acta. Biomembranes","volume":"1866 7","pages":"Article 184369"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Biomembranes","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005273624001007","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Trk1 is the main K+ importer of Saccharomyces cerevisiae. Its proper functioning enables yeast cells to grow in environments with micromolar amounts of K+. Although the structure of Trk1 has not been experimentally determined, the transporter is predicted to be composed of four MPM (transmembrane segment – pore loop – transmembrane segment) motifs which are connected by intracellular loops. Of those, in particular the first loop (IL1) is unique in its length; it forms more than half of the entire protein. The deletion of the majority of IL1 does not abolish the transport activity of Trk1. However IL1 is thought to be involved in the modulation of the transporter's functioning. In this work, we prepared a series of internally shortened versions of Trk1 that lacked various parts of IL1, and we studied their properties in S. cerevisiae cells without chromosomal copies of TRK genes. Using this approach, we were able to determine that both N- and C-border regions of IL1 are necessary for the proper localization of Trk1. Moreover, the N-border part of IL1 is also important for the functioning of Trk1, as its absence resulted in a decrease in the transporter's substrate affinity. In addition, in the internal part of IL1, we newly identified a stretch of amino-acid residues that are indispensable for retaining the transporter's maximum velocity, and another region whose deletion affected the ability of Trk1 to adjust its affinity in response to external levels of K+.

Abstract Image

其细胞内第一环的不同区域有助于主要酵母 K+ 导入器 Trk1 的正确定位、转运活性和底物亲和性调整。
Trk1 是酿酒酵母的主要 K+ 输入器。它的正常功能使酵母细胞能够在微摩尔量 K+ 的环境中生长。虽然 Trk1 的结构尚未通过实验确定,但根据预测,该转运体由四个 MPM(跨膜段-孔环-跨膜段)图案组成,这些图案通过胞内环相连。其中,第一个环(IL1)的长度尤为独特;它占整个蛋白质的一半以上。删除 IL1 的大部分并不能取消 Trk1 的运输活性。然而,IL1 被认为参与了转运体功能的调节。在这项工作中,我们制备了一系列缺乏不同部分 IL1 的内部缩短版 Trk1,并在没有 TRK 基因染色体拷贝的 S. cerevisiae 细胞中研究了它们的特性。利用这种方法,我们能够确定 IL1 的 N 边界和 C 边界区域都是 Trk1 正常定位所必需的。此外,IL1的N-边界部分对Trk1的功能也很重要,因为它的缺失会导致转运体的底物亲和力下降。此外,在IL1的内部,我们新发现了一段氨基酸残基,该残基对于保持转运体的最大速度不可或缺,而另一个区域的缺失则影响了Trk1根据外部K+水平调整其亲和力的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochimica et biophysica acta. Biomembranes
Biochimica et biophysica acta. Biomembranes 生物-生化与分子生物学
CiteScore
8.20
自引率
5.90%
发文量
175
审稿时长
2.3 months
期刊介绍: BBA Biomembranes has its main focus on membrane structure, function and biomolecular organization, membrane proteins, receptors, channels and anchors, fluidity and composition, model membranes and liposomes, membrane surface studies and ligand interactions, transport studies, and membrane dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信